

Title	Page
PHP	7	Data	Structures	and	Algorithms
Leverage	the	power	of	PHP	data	structures	and	crucial	algorithms	to	build	high-
performance	applications
Mizanur	Rahman

BIRMINGHAM	-	MUMBAI

Copyright

Credits

Author	

	

Mizanur	Rahman

Copy	Editor

	

Safis	Editing

Reviewer

	

Andrew	Caya

Project	Coordinator			

	

Vaidehi	Sawant

Commissioning	Editor

	

Kunal	Parikh

Proofreader		

	

Safis	Editing

Acquisition	Editor		

	

Nitin	Dasan

Indexer		

	

Rekha	Nair	

Content	Development	Editor	

	

Zeeyan	Pinheiro

Graphics

	

Jason	Monteiro

Technical	Editor

	

	Kunal	Mali

Production	Coordinator

	

Shraddha	Falebhai

	

About	the	Author
	

Mizanur	Rahman	is	a	technology	enthusiast	and	problem	solver	from	Dhaka,	Bangladesh,	who	loves
web	and	mobile	application	development.	Over	the	years,	he	has	been	working	with	PHP,	Laravel,
CodeIgniter,	Symfony,	JavaScript,	C,	C++,	Java,	Node.js,	Socket.io,	and	React.js.	He	is	a	Zend	Certified
PHP	5	programmer	with	14	years	of	experience.	He	is	also	a	Certified	Scrum	Master	(CSM)	and	the	first
Certified	Scrum	Professional	(CSP)	from	ScrumAlliance	in	Bangladesh.	He	is	also	a	Certified	Scrum
Product	Owner	(CSPO),	Certified	Scrum	Developer	(CSD),	and	SAFe	Agilist	(SA).	

He	got	a	degree	in	computer	science	from	the	North	South	University,	Bangladesh,	in	2003.	He	is
currently	working	as	the	head	of	software	development	at	Telenor	Health	AS.	He	has	two	start-ups	of	his
own,	Informatix	Technologies	and	TechMasters.	He	previously	worked	for	companies	such	as	TrustPilot,
Denmark,	and	Somewherein	Inc	along	with	Relisource	technologies	and	TigerIT	from	Bangladesh.

He	has	been	involved	in	different	technology	communities	from	Bangladesh	for	over	10	years.	He	is	the
administrator	for	PHPXperts,	the	largest	PHP-based	group	in	the	south-east	Asia	with	more	than	25,000
members.	He	is	also	involved	in	Agile	and	Scrum	movement	in	Bangladesh.	He	is	the	founder	and	the
administrator	of	the	Agile	Bangladesh	community.	He	is	also	a	problem	solver	for	Project	Euler.

He	has	published	two	books:	MediaWiki	Administrators’	Tutorial	Guide	and	MediaWiki	1.1	Beginner's
Guide,	both	by	Packt	Publishing.	He	is	a	regular	speaker	at	various	development	conferences,	technology
seminars,	and	agile	events	in	Bangladesh	and	Asia.

He	lives	in	Dhaka	with	his	lovely	wife,	Nisha,	and	two	cute	sons,	Adiyan	and	Mikhael.	When	he	is	not
working,	he	spends	his	time	with	his	family	and	travel	around	the	world.
You	can	reach	him	at	mizan@informatixbd.com,	or	follow	his	personal	blog.

	

	

About	the	Reviewer
Andrew	Caya	discovered	his	passion	for	computers	at	the	age	of	11	and	started	programming	in	GW-
BASIC	and	QBASIC	in	the	early	90s.	He	earned	a	master’s	degree	in	Information	Science	and	Master's
Short	Programme	in	Public	Administration.	After	doing	some	software	development	in	C,	C++,	and	Perl,
and	some	Linux	system	administration,	he	became	a	PHP	developer	more	than	7	years	ago.	He	is	also	a
Zend	Certified	PHP	Engineer	and	a	Zend	Certified	Architect.

He	is	the	creator	of	Linux	for	PHP,	a	lightweight,	Docker-based,	custom	Linux	project	that	allows	PHP
developers	to	easily	compile	and	use	recent	versions	of	PHP	in	a	variety	of	ways.	He	is	also	the	lead
developer	of	a	popular	Joomla	extension	and	has	the	great	pleasure	of	contributing	code	to	many	open
source	projects.

He	is	currently	a	professional	contract	programmer	in	Montreal,	Canada,	a	technical	reviewer	for	Packt
Publishing,	and	a	loving	husband,	and	father.

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are
entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

	

Customer	Feedback
	

Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at	https://www.amazon.com/dp/178646389X.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

	

	

https://www.amazon.com/dp/178646389X

Dedication

I	want	to	dedicate	this	book	to	my	parents,	Mr.	M.	A.	Jalil	and	Mrs.	Rokeya	Jalil.

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Introduction	to	Data	Structures	and	Algorithms
Importance	of	data	structures	and	algorithms

Understanding	Abstract	Data	Type	(ADT)

Different	data	structures
Struct

Array

Linked	list

Doubly	linked	list

Stack

Queue

Set

Map

Tree

Graph

Heap

Solving	a	problem	-	algorithmic	approach

Writing	pseudocode
Converting	pseudocode	to	actual	code

Algorithm	analysis
Calculating	the	complexity

Understanding	the	big	O	(big	oh)	notation

Standard	PHP	Library	(SPL)	and	data	structures

Summary

2.	 Understanding	PHP	Arrays
Understanding	PHP	arrays	in	a	better	way

Numeric	array

Associative	array

Multidimensional	array

Using	an	array	as	flexible	storage

Use	of	multi-dimensional	arrays	to	represent	data	structures
Creating	fixed	size	arrays	with	the	SplFixedArray	method

Performance	comparison	between	a	regular	PHP	array	and	SplFixedArray
More	examples	using	SplFixedArray

Changing	from	a	PHP	array	to	SplFixedArray

Converting	a	SplFixedArray	to	a	PHP	array

Changing	the	SplFixedArray	size	after	declaration

Creating	a	multidimensional	array	using	SplFixedArray

Understanding	hash	tables

Implementing	struct	using	a	PHP	array

Implementing	sets	using	a	PHP	array

Best	usage	of	a	PHP	array

PHP	array,	is	it	a	performance	killer?

Summary

3.	 Using	Linked	Lists
What	is	a	linked	list?

Different	types	of	linked	list
Doubly	linked	lists

Circular	linked	lists

Multi-linked	lists

Inserting,	deleting,	and	searching	for	an	item
Inserting	at	the	first	node

Searching	for	a	node

Inserting	before	a	specific	node

Inserting	after	a	specific	node

Deleting	the	first	node

Deleting	the	last	node

Searching	for	and	deleting	a	node

Reversing	a	list

Getting	the	Nth	position	element

Understanding	complexity	for	linked	lists

Making	the	linked	list	iterable

Building	circular	linked	list

Implementing	a	doubly	linked	list	in	PHP

Doubly	linked	list	operations
Inserting	at	first	the	node

Inserting	at	the	last	node

Inserting	before	a	specific	node

Inserting	after	a	specific	node

Deleting	the	first	node

Deleting	the	last	node

Searching	for	and	deleting	one	node

Displaying	the	list	forward

Displaying	the	list	backward

Complexity	for	doubly	linked	lists

Using	PHP	SplDoublyLinkedList

Summary

4.	 Constructing	Stacks	and	Queues
Understanding	stack

Implementing	a	stack	using	PHP	array

Understanding	complexity	of	stack	operations

Implementing	stack	using	linked	list

Using	SplStack	class	from	SPL

Real	life	usage	of	stack
Nested	parentheses	matching

Understanding	queue
Implementing	a	queue	using	PHP	array

Implementing	a	queue	using	linked	list

Using	SplQueue	class	from	SPL

Understanding	priority	queue
Ordered	sequence

Unordered	sequence

Implementing	priority	queue	using	linked	list

Implement	a	priority	queue	using	SplPriorityQueue

Implementing	a	circular	queue

Creating	a	double	-	ended	queue	(deque)

Summary

5.	 Applying	Recursive	Algorithms	-	Recursion
Understanding	recursion

Properties	of	recursive	algorithms

Recursion	versus	iterative	algorithms

Implementing	Fibonacci	numbers	using	recursion

Implementing	GCD	calculation	using	recursion

Different	types	of	recursions
Linear	recursion

Binary	recursion

Tail	recursion

Mutual	recursion

Nested	recursion

Building	an	N-level	category	tree	using	recursion
Building	a	nested	comment	reply	system

Finding	files	and	directories	using	recursion

Analyzing	recursive	algorithms

Maximum	recursion	depth	in	PHP

Using	SPL	recursive	iterators

Using	the	PHP	built-in	function	array_walk_recursive

Summary

6.	 Understanding	and	Implementing	Trees
Tree	definition	and	properties

Implementing	a	tree	using	PHP

Different	types	of	tree	structures
Binary	tree

Binary	search	tree

Self-balanced	binary	search	tree
AVL	tree

Red-black	tree

B-tree

N-ary	Tree

Understanding	a	binary	tree

Implementing	a	binary	tree

Creating	a	binary	tree	using	a	PHP	array

Understanding	the	binary	search	tree
Inserting	a	new	node

Searching	a	node

Finding	the	minimum	value

Finding	the	maximum	value

Deleting	a	node

Constructing	a	binary	search	tree

Tree	traversal
In-order

Pre-order

Post-order

Complexity	of	different	tree	data	structures

Summary

7.	 Using	Sorting	Algorithms
Understanding	sorting	and	their	types

Understanding	bubble	sort
Implementing	bubble	sort	using	PHP

Complexity	of	bubble	sort

Improving	bubble	sort	algorithm

Understanding	selection	sort
Implementing	selection	sort

Complexity	of	selection	sort

Understanding	insertion	Sort
Implementing	insertion	sort

Complexity	of	insertion	sort

Understanding	divide-and-conquer	technique	for	sorting

Understanding	merge	sort
Implementing	merge	sort

Complexity	of	merge	sort

Understanding	quick	sort
Implementing	quick	sort

Complexity	of	quick	sort

Understanding	bucket	sort

Using	PHP's	built-in	sorting	function

Summary

8.	 Exploring	Search	Options
Linear	searching

Binary	search
Analysis	of	binary	search	algorithm

Repetitive	binary	search	tree	algorithm

Searching	an	unsorted	array	-	should	we	sort	first?

Interpolation	search

Exponential	search

Search	using	hash	table

Tree	searching

Breadth	first	search
Implementing	breadth	first	search

Depth	first	search
Implementing	depth	first	search

Summary

9.	 Putting	Graphs	into	Action
Understanding	graph	properties

Vertex

Edge

Adjacent

Incident

Indegree	and	outdegree

Path

Types	of	graphs
Directed	graphs

Undirected	graphs

Weighted	graphs

Directed	acyclic	graphs	(DAG)

Representing	graphs	in	PHP
Adjacency	lists

Adjacency	matrix

Revisiting	BFS	and	DFS	for	graphs
Breadth	first	search

Depth	first	search

Topological	sorting	using	Kahn's	algorithm

Shortest	path	using	the	Floyd-Warshall	algorithm

Single	source	shortest	path	using	Dijkstra's	algorithm

Finding	the	shortest	path	using	the	Bellman-Ford	algorithm

Understanding	the	minimum	spanning	tree	(MST)

Implementing	Prim's	spanning	tree	algorithm

Kruskal's	algorithm	for	spanning	tree

Summary

10.	 Understanding	and	Using	Heaps
What	is	a	heap?

Heap	operations

Implementing	a	binary	heap	in	PHP

Analyzing	the	complexity	of	heap	operations

Using	heaps	as	a	priority	queue

Using	heap	sort

Using	SplHeap,	SplMaxHeap,	and	SplMinHeap

Summary

11.	 Solving	Problems	with	Advanced	Techniques
Memoization

Pattern	matching	algorithms

Implementing	Knuth-Morris-Pratt	algorithm

Greedy	algorithms

Implementing	Huffman	coding	algorithm

Understanding	dynamic	programming

0	-	1	knapsack

Finding	the	longest	common	subsequence-LCS

DNA	sequencing	using	dynamic	programming

Backtracking	to	solve	puzzle	problem

Collaborative	filtering	recommendation	system

Using	bloom	filters	and	sparse	matrix

Summary

12.	 PHP	Built-In	Support	for	Data	Structures	and	Algorithms
Built-in	PHP	features	for	data	structure

Using	PHP	array

SPL	classes

Built-in	PHP	algorithms

Hashing

Built-in	support	through	PECL
Installation

Interfaces

Vector

Summary

13.	 Functional	Data	Structures	with	PHP
Understanding	functional	programming	with	PHP

First	class	functions

Higher	order	functions

Pure	functions

Lambda	functions

Closures

Currying

Partial	applications

Getting	started	with	Tarsana

Implementing	stack

Implementing	a	queue

Implementing	a	tree

Summary

PHP	7	Data	Structures	and	Algorithms
Copyright	©	2017	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in
a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	May	2017

Production	reference:	1240517

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78646-389-0

www.packtpub.com

http://www.packtpub.com

	

Preface
	

Data	structures	and	algorithms	are	an	integral	part	of	software	application	development.	Whether	we	are
building	a	web-based	application,	a	CMS,	or	a	standalone	backend	system	using	PHP,	we	need	to	apply
algorithms	and	data	structures	all	the	time.	Sometimes,	we	do	that	without	noticing	and	sometimes	without
giving	proper	attention	to	it.	Most	developers	think	that	these	two	topics	are	really	difficult	and	there	is	no
point	in	paying	attention	to	details	as	PHP	has	lots	of	built-in	support	for	data	structures	and	algorithms.	In
this	book,	we	will	focus	on	the	basics	and	practical	examples	of	PHP	data	structures	and	algorithms	so
that	we	know	what	data	structures	are,	why	to	choose	them,	and	where	to	apply	which	algorithms.	This
book	is	designed	for	novice	as	well	as	experienced	PHP	programmers.	The	book	starts	from	basic	topics
and	moves	on	to	more	advanced	topics.	We	have	tried	to	accommodate	lots	of	examples	with	images	and
explanations	in	this	book	so	that	you	can	understand	the	concepts	properly	in	visual	form	and	with
practical	examples.

	

	

What	this	book	covers
Chapter	1,	Introduction	to	Data	Structures	and	Algorithms,	focuses	on	different	data	structures,	their
definitions,	properties,	and	examples.	This	chapter	also	includes	the	way	in	which	we	analyze	algorithms
and	find	their	complexities,	with	special	emphasis	on	Big	Oh	(O)	notation.

Chapter	2,	Understanding	PHP	Arrays,	focuses	on	a	very	basic	and	built-in	data	structure	in	PHP	--	PHP
arrays.	This	also	covers	what	we	can	achieve	through	PHP	arrays	and	their	advantages	and
disadvantages.	We	focus	on	how	to	use	arrays	to	implement	other	data	structures.

Chapter	3,	Using	Linked	Lists,	covers	the	different	types	of	linked	lists.	It	focuses	on	the	classification	of
different	variances	of	linked	lists	and	their	construction	process,	with	examples.

Chapter	4,	Constructing	Stacks	and	Queues,	focuses	on	two	of	the	most	important	data	structures	in	this
chapter--stacks	and	queues.	We	see	how	to	construct	stacks	and	queues	using	different	methods	and
discuss	their	operation	and	usage	with	examples.

Chapter	5,	Applying	Recursive	Algorithms	-	Recursion,	focuses	on	one	important	topic	with	algorithms--
recursion.	We	cover	the	different	ways	in	which	we	can	solve	a	problem	using	recursive	algorithms	and
the	advantages	and	disadvantages	of	using	this	technique.	We	also	cover	some	basic	day-to-day
programming	problems	that	we	can	solve	using	recursion.

Chapter	6,	Understanding	and	Implementing	Trees,	talks	about	a	non-hierarchical	data	structure--the	tree.
We	cover	tree	properties	and	how	to	construct	them,	and	understand	the	cases	in	which	the	tree	data
structure	will	be	important	to	us.

Chapter	7,	Using	Sorting	Algorithms,	demonstrates	how	to	implement	different	sorting	algorithms	and	their
complexity,	as	sorting	is	a	very	important	topic	in	the	programming	world	and	the	search	for	an	efficient
sorting	algorithm	is	always	on.	At	the	end	of	the	chapter,	we	also	cover	the	built-in	PHP	sorting
algorithms.

Chapter	8,	Exploring	Search	Options,	states	how	searching	is	important	in	the	programming	world.	In	this
chapter,	we	focus	on	different	searching	techniques	and	when	to	use	which	algorithms.	We	also	discuss
whether	we	should	sort	before	searching.	This	chapter	contains	lots	of	examples	and	implementations	of
different	algorithms.

Chapter	9,	Putting	Graphs	into	Action,	explains	how	graph	algorithms	are	one	of	the	most	widely	used
algorithms	in	the	programming	paradigm.	In	this	chapter,	we	focus	on	different	graph-related	problems
and	solve	them	using	different	algorithms.	We	cover	implementations	of	the	shortest	path	algorithm	and
minimal	spanning	trees	with	examples	and	explanations.

Chapter	10,	Understanding	and	Using	Heaps,	talks	about	the	last	data	structure	topic	in	the	book--the	heap.
It	is	a	very	efficient	data	structure	and	is	used	in	many	implementations	in	the	real	world.	We	show	how	to
build	heaps	and	their	uses,	including	the	implementations	of	the	heap	sort	algorithm.

Chapter	11,	Solving	Problems	with	Advanced	Techniques,	focuses	on	different	techniques	to	solve
problems.	We	focus	our	discussion	on	topics	such	as	memoization,	dynamic	programming,	greedy
algorithms,	and	backtracking,	along	with	examples	and	solutions	for	practical	problems.

Chapter	12,	PHP’s	Built-In	Support	for	Data	Structures	and	Algorithms,	shows	the	built-in	support	we
have	for	data	structures	and	algorithms.	We	talk	about	PHP’s	functions,	PECL	libraries,	and	also	some
references	for	online	resources.

Chapter	13,	Functional	Data	Structures	with	PHP,	sheds	some	light	on	functional	programming	and
functional	data	structures	using	PHP,	as	functional	programming	is	creating	a	lot	of	hype	these	days.	We
introduce	a	functional	programming	library	called	Tarsana	and	show	different	examples	of	using	it.

	

What	you	need	for	this	book
	

All	you	need	to	have	is	the	latest	PHP	version	(minimum	requirement	is	PHP	7.x)	installed	on	your
machine.	You	can	run	the	examples	from	a	command	line,	which	does	not	require	a	web	server.	However,
if	you	want,	you	can	install	Apache	or	Nginx,	or	the	following:

PHP	7.x+
Nginx/apache	(optional)
PHP	IDE	or	code	editor

	

Who	this	book	is	for
This	book	is	for	those	who	want	to	learn	data	structures	and	algorithms	with	PHP	for	better	control	over
application-solution,	efficiency,	and	optimization.	
A	basic	understanding	of	PHP	data	types,	control	structures,	and	other	basic	features	is	required.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Codes	are	written	with	a	different	font	from	the	book	text	fonts	to	highlight	the	code	block.

	

A	block	of	code	is	set	as	follows:

[default]

class	TreeNode	{

				public	$data	=	NULL;

				public	$children	=	[];

				public	function	__construct(string	$data	=	NULL)	{

									$this->data	=	$data;

				}

				public	function	addChildren(TreeNode	$node)	{

									$this->children[]	=	$node;

				}

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block	during	the	explanation,	the	code
is	highlighted	within	the	text	like	this:	addChildren.

Any	command-line	input	or	output	is	written	as	follows:

Final	-Semi	Final	1	--Quarter	Final	1	--Quarter	Final	2	-Semi	Final	2	--Quarter	Final	3	--Quarter	Final	4

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,
in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Clicking	the	Next	button	moves	you	to	the
next	screen."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject
of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

	

Downloading	the	example	code
	

You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/PHP7-Data-Structures-and-A
lgorithms.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos	available	at	https://github
.com/PacktPublishing/.	Check	them	out!

	

	

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/PHP-7-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from	https://www.packtpub.com/sites/default/files/downloads/PHP7DataStructuresandAlgorithms_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf

	

Errata
	

Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our
website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the	name	of
the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

	

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we	will
do	our	best	to	address	the	problem.

Introduction	to	Data	Structures	and	Algorithms
We	are	living	in	a	digital	era.	In	every	segment	of	our	life	and	daily	needs,	we	have	a	significant	use	of
technology.	Without	technology,	the	world	will	virtually	stand	still.	Have	you	ever	tried	to	find	what	it
takes	to	prepare	a	simple	weather	forecast?	Lots	of	data	are	analyzed	to	prepare	simple	information,
which	is	delivered	to	us	in	real	time.	Computers	are	the	most	important	find	of	the	technology	revolution
and	they	have	changed	the	world	drastically	in	the	last	few	decades.	Computers	process	these	large	sets
of	data	and	helps	us	in	every	technology-dependent	task	and	need.	In	order	to	make	computer	operation
efficient,	we	represent	data	in	different	formats	or	we	can	call	in	different	structures,	which	are	known	as
data	structures.

Data	structures	are	very	important	components	for	computers	and	programming	languages.	Along	with
data	structures,	it	is	also	very	important	to	know	how	to	solve	a	problem	or	find	a	solution	using	these
data	structures.	From	our	simple	mobile	phone	contact	book	to	complex	DNA	profile	matching	systems,
the	use	of	data	structures	and	algorithms	is	everywhere.

Have	we	ever	thought	that	standing	in	a	superstore	queue	to	payout	can	be	a	representation	of	data
structure?	Or	taking	out	a	bill	from	a	pile	of	papers	can	be	another	use	of	data	structure?	In	fact,	we	are
following	data	structure	concepts	almost	everywhere	in	our	lives.	Whether	we	are	managing	the	queue	to
pay	the	bill	or	to	get	to	the	transportation,	or	maintaining	a	stack	for	a	pile	of	books	or	papers	for	daily
works,	data	structures	are	everywhere	and	impacting	our	lives.

PHP	is	a	very	popular	scripting	language	and	billions	of	websites	and	applications	are	built	using	it.
People	use	Hypertext	Preprocessor	(PHP)	for	simple	applications	to	very	complex	ones	and	some	are
very	data	intensive.	The	big	question	is--should	we	use	PHP	for	any	data	intensive	application	or
algorithmic	solutions?	Of	course	we	should.	With	the	new	release	of	PHP	7,	PHP	has	entered	into	new
possibilities	of	efficient	and	robust	application	development.	Our	mission	will	be	to	show	and	prepare
ourselves	to	understand	the	power	of	data	structures	and	algorithms	using	PHP	7,	so	that	we	can	utilize	it
in	our	applications	and	programs.

Importance	of	data	structures	and	algorithms
If	we	consider	our	real-life	situation	with	computers,	we	also	use	different	sorts	of	arrangements	of	our
belongings	and	data	so	that	we	can	use	them	efficiently	or	find	them	easily	when	needed.	What	if	we	enter
our	phone	contact	book	in	a	random	order?	Will	we	be	able	to	find	a	contact	easily?	We	might	end	up
searching	each	and	every	contact	in	the	book	as	the	contacts	are	not	arranged	in	a	particular	order.	Just
consider	the	following	two	images:

One	shows	that	the	books	are	scattered	and	finding	a	particular	book	will	take	time	as	the	books	are	not
organized.	The	other	one	shows	that	the	books	are	organized	in	a	stack.	Not	only	does	the	second	image
show	that	we	are	using	the	space	smartly,	but	also	the	searching	of	books	becomes	easier.

Let	us	consider	another	example.	We	are	going	to	buy	tickets	for	an	important	football	match.	There	are
thousands	of	people	waiting	for	the	ticket	booth	to	open.	Tickets	are	going	to	be	distributed	on	a	first
come	first	served	basis.	If	we	consider	the	following	two	images,	which	one	is	the	best	way	of	handling
such	a	big	crowd?:

The	left	image	clearly	shows	that	there	is	no	proper	order	and	there	is	no	way	to	know	who	came	first	to
get	the	tickets.	But	if	we	knew	that	people	were	waiting	in	a	structured	way,	in	a	line,	or	queue,	then	it
will	be	easier	to	handle	the	crowd	and	we	will	hand	over	the	tickets	to	whoever	came	first.	This	is	a
common	phenomenon	known	as	a	queue	which	is	heavily	used	in	the	programming	world.	Programming
terms	are	not	generated	from	outside	the	world.	In	fact,	the	majority	of	the	data	structures	are	inspired
from	real	life	and	they	use	the	same	terms	most	of	the	times.	Whether	we	are	preparing	our	task	list,
contact	list,	book	piles,	diet	charting,	preparing	a	family	tree,	or	organization	hierarchy,	we	are	basically
using	different	arrangement	techniques	which	are	known	as	data	structures	in	the	computing	world.

We	have	talked	a	little	about	data	structures	so	far	but	what	about	algorithms?	Don't	we	use	any

algorithms	in	our	daily	lives?	Definitely	we	do.	Whenever	we	are	searching	for	a	contact	from	our	old
phone	book,	we	are	definitely	not	searching	from	the	beginning.	If	we	are	searching	for	Tom,	we	will	not
search	the	page	where	it	says	A,	B,	or	C.	We	are	directly	going	to	the	page	T	and	will	find	if	Tom	is	listed
there	or	not.	Or,	if	we	need	to	find	a	doctor	from	a	telephone	directory,	we	will	definitely	not	search	in
the	foods	section.	If	we	consider	the	phone	book	or	telephone	directory	as	data	structures,	then	the	way
we	search	for	particular	information	is	known	as	algorithms.	While	data	structures	help	us	to	use	data
efficiently,	algorithms	help	us	to	perform	different	operations	on	those	data	efficiently.For	example,	if	we
have	100,000	entries	in	our	phone	directory,	searching	a	particular	entry	from	the	beginning	might	take	a
long	time.	But,	if	we	know	the	doctors	are	listed	from	page	200	to	220,	we	can	search	only	those	pages	to
save	our	time	by	searching	a	small	section	rather	than	the	full	directory:

We	can	also	consider	a	different	way	of	searching	for	a	doctor.	While	the	previous	paragraph	takes	the
approach	of	searching	a	particular	section	of	the	directory,	we	can	even	search	alphabetically	within	the
directory,	like	the	way	we	search	a	dictionary	for	a	word.	That	might	even	reduce	the	time	and	entries	for
our	searching.	There	can	be	many	different	approaches	to	find	solutions	of	a	problem,	and	each	of	the
approaches	can	be	named	as	algorithms.	From	the	earlier	discussion	we	can	say	that	for	a	particular
problem	or	task,	there	can	be	multiple	ways	or	algorithms	to	perform.	Then	which	one	should	we
consider	to	use?	We	are	going	to	discuss	that	very	soon.	Before	moving	to	that	point,	we	are	going	to
focus	on	PHP	data	types	and	Abstract	Data	Types	(ADT).	In	order	to	grasp	the	data	structure	concept,
we	must	have	a	strong	understanding	of	PHP	data	types	and	ADT.

Understanding	Abstract	Data	Type	(ADT)
PHP	has	eight	primitive	data	types	and	those	are	booleans,	integer,	float,	string,	array,	object,	resource,
and	null.	Also,	we	have	to	remember	that	PHP	is	a	weakly	typed	language	and	that	we	are	not	bothered
about	the	data	type	declaration	while	creating	those.	Though	PHP	has	some	static	type	features,	PHP	is
predominantly	a	dynamically	typed	language	which	means	variables	are	not	required	to	be	declared
before	using	it.	We	can	assign	a	value	to	a	new	variable	and	use	it	instantly.

For	the	examples	of	data	structures	we	have	discussed	so	far	can	we	use	any	of	the	primitive	data	types	to
represent	those	structures?	Maybe	we	can	or	maybe	not.	Our	primitive	data	types	have	one	particular
objective:	storing	data.	In	order	to	achieve	some	flexibility	in	performing	operations	on	those	data,	we
will	require	using	the	data	types	in	such	a	way	so	that	we	can	use	them	as	a	particular	model	and	perform
some	operations.	This	particular	way	of	handling	data	through	a	conceptual	model	is	known	as	Abstract
Data	Type,	or	ADT.	ADT	also	defines	a	set	of	possible	operations	for	the	data.

We	need	to	understand	that	ADTs	are	mainly	theoretical	concepts	which	are	used	in	design	and	analysis	of
algorithms,	data	structures,	and	software	design.	In	contrast,	data	structures	are	concrete	representations.
In	order	to	implement	an	ADT,	we	might	need	to	use	data	types	or	data	structures	or	both.	The	most
common	example	of	ADTs	is	stack	and	queue:

Considering	the	stack	as	ADT,	it	is	not	only	a	collection	of	data	but	also	two	important	operations	called
push	and	pop.	Usually,	we	put	a	new	entry	at	the	top	of	the	stack	which	is	known	as	push	and	when	we
want	to	take	an	item,	we	take	from	the	top	which	is	also	known	as	pop.	If	we	consider	PHP	array	as	a
stack,	we	will	require	additional	functionality	to	achieve	these	push	and	pop	operations	to	consider	it	as
stack	ADT.	Similarly,	a	queue	is	also	an	ADT	with	two	required	operations:	to	add	an	item	at	the	end	of
the	queue	also	known	as	enqueue	and	remove	an	item	from	the	beginning	of	the	queue,	also	known	as
dequeue.	Both	sound	similar	but	if	we	give	a	close	observation	we	will	see	that	a	stack	works	as	a	Last-
In,	First-Out	(LIFO)	model	whereas	a	queue	works	as	a	First-In,	First-Out	(FIFO)	model.	These	two
different	mathematical	models	make	them	two	different	ADTs.

Here	are	some	common	ADTs:

List
Map
Set
Stack
Queue
Priority	queue

Graph
Tree

In	coming	chapters,	we	will	explore	more	ADTs	and	implement	them	as	data	structures	using	PHP.

	

Different	data	structures
	

We	can	categorize	data	structures	in	to	two	different	groups:

Linear	data	structures
Nonlinear	data	structures

In	linear	data	structures,	items	are	structured	in	a	linear	or	sequential	manner.	Array,	list,	stack,	and	queue
are	examples	of	linear	structures.	In	nonlinear	structures,	data	are	not	structured	in	a	sequential	way.
Graph	and	tree	are	the	most	common	examples	of	nonlinear	data	structures.

Let	us	now	explore	the	world	of	data	structures,	with	different	types	of	data	structures	and	their	purposes
in	a	summarized	way.	Later	on,	we	will	explore	each	of	the	data	structures	in	details.

There	are	many	different	types	of	data	structures	that	exist	in	the	programming	world.	Out	of	them,
following	are	the	most	used	ones:

Struct
Array
Linked	list
Doubly	linked	list
Stack
Queue
Priority	queue
Set
Map
Tree
Graph
Heap

	

	

Struct
	

Usually,	a	variable	can	store	a	single	data	type	and	a	single	scalar	data	type	can	only	store	a	single	value.
There	are	many	situations	where	we	might	need	to	group	some	data	types	together	as	a	single	complex
data	type.	For	example,	we	want	to	store	some	student	information	together	in	a	student	data	type.	We
need	the	student	name,	address,	phone	number,	email,	date	of	birth,	current	class,	and	so	on.	In	order	to
store	each	student	record	to	a	unique	student	data	type,	we	will	need	a	special	structure	which	will	allow
us	to	do	that.	This	can	be	easily	achieved	by	struct.	In	other	words,	a	struct	is	a	container	of	values	which
is	typically	accessed	using	names.	Though	structs	are	very	popular	in	C	programming	language,	we	can
use	a	similar	concept	in	PHP	as	well.	We	are	going	to	explore	that	in	coming	chapters.

	

	

	

Array
	

Though	an	array	is	considered	to	be	a	data	type	in	PHP,	an	array	is	actually	a	data	structure	which	is
mostly	used	in	all	programming	platforms.	In	PHP,	the	array	is	actually	an	ordered	map	(we	are	going	to
know	about	maps	after	a	few	more	sections).	We	can	store	multiple	values	in	a	single	array	as	a	single
variable.	Matrix	type	data	are	easy	to	store	in	an	array	and	hence	it	is	used	widely	in	all	programming
platforms.	Usually	arrays	are	a	fixed	size	collection	which	is	accessed	by	sequential	numeric	indexes.	In
PHP,	arrays	are	implemented	differently	and	you	can	define	dynamic	arrays	without	defining	any	fixed
size	of	the	array.	We	will	explore	more	about	PHP	arrays	in	the	next	chapter.	Arrays	can	have	different
dimensions.	If	an	array	has	only	one	index	to	access	an	element,	we	call	it	a	single	dimension	array.	But	if
it	requires	two	or	more	indexes	to	access	an	element,	we	call	it	two	dimensional	or	multidimensional
arrays	respectively.	Here	are	two	diagrams	of	array	data	structures:	

	

	

	

Linked	list
	

A	linked	list	is	a	linear	data	structure	which	is	a	collection	of	data	elements	also	known	as	nodes	and	can
have	varying	sizes.	Usually,	listed	items	are	connected	through	a	pointer	which	is	known	as	a	link	and
hence	it	is	known	as	a	linked	list.	In	a	linked	list,	one	list	element	links	to	the	next	element	through	a
pointer.	From	the	following	diagram,	we	can	see	that	the	linked	list	actually	maintains	an	ordered
collection.	Linked	lists	are	the	most	common	and	simplest	form	of	data	structures	used	by	programming
languages.	In	a	single	linked	list,	we	can	only	go	forward.	In	Chapter	3,	Using	Linked	Lists	we	are	going	to

dive	deep	inside	the	linked	list	concepts	and	implementations:	

	

	

	

Doubly	linked	list
	

A	doubly	linked	list	is	a	special	type	of	linked	list	where	we	not	only	store	what	is	the	next	node,	but	we
also	store	the	previous	node	inside	the	node	structure.	As	a	result,	it	can	move	forward	and	backward
within	the	list.	It	gives	more	flexibility	than	a	single	linked	list	or	linked	list	by	having	both	the	previous
and	next	pointers.	We	are	going	to	explore	more	about	these	in	Chapter	3,	Using	Linked	Lists.	The
following	diagram	depicts	a	doubly	linked	list:	

	

	

	

Stack
	

As	we	talked	about	the	stack	in	previous	pages,	we	already	know	that	stack	is	a	linear	data	structure	with
the	LIFO	principle.	As	a	result,	stacks	have	only	one	end	to	add	a	new	item	or	remove	an	item.	It	is	one	of
the	oldest	and	most	used	data	structures	in	computer	technology.	We	always	add	or	remove	an	item	from	a
stack	using	the	single	point	named	top.	The	term	push	is	used	to	indicate	an	item	to	be	added	on	top	of	the
stack	and	pop	to	remove	an	item	from	the	top;	this	is	shown	in	the	following	diagram.	We	will	discuss
more	about	stacks	in	Chapter	4,	Constructing	Stacks	and	Queues.

	

	

	

Queue
	

A	queue	is	another	linear	data	structure	which	follows	the	FIFO	principle.	A	queue	allows	two	basic
operations	on	the	collection.	The	first	one	is	enqueue	which	allows	us	to	add	an	item	to	the	back	of	the
queue.	The	second	one	is	dequeue	which	allows	us	to	remove	an	item	from	the	front	of	the	queue.	A	queue
is	another	of	the	most	used	data	structures	in	computer	technology.	We	will	learn	details	about	queues	in	C
hapter	4,	Consrtucting	Stacks	and	Queues.

	

	

	

Set
	

A	set	is	an	abstract	data	type	which	is	used	to	store	certain	values.	These	values	are	not	stored	in	any
particular	order	but	there	should	not	be	any	repeated	values	in	the	set.	Set	is	not	used	like	a	collection
where	we	retrieve	a	specific	value	from	it;	a	set	is	used	to	check	the	existence	of	a	value	inside	it.
Sometimes	a	set	data	structure	can	be	sorted	and	we	call	it	an	ordered	set.

	

	

	

Map
	

A	map	is	a	collection	of	key	and	value	pairs	where	all	the	keys	are	unique.	We	can	consider	a	map	as	an
associative	array	where	all	keys	are	unique.	We	can	add	and	remove	using	key	and	value	pairs	along	with
update	and	look	up	from	a	map	using	a	key.	In	fact,	PHP	arrays	are	ordered	map	implementations.	We	are
going	to	explore	that	in	the	next	chapter.

	

	

	

Tree
	

A	tree	is	the	most	widely	used	nonlinear	data	structure	in	the	computing	world.	It	is	highly	used	for
hierarchical	data	structures.	A	tree	consists	of	nodes	and	there	is	a	special	node	which	is	known	as	the
root	of	the	tree	which	starts	the	tree	structure.	Other	nodes	descend	from	the	root	node.	Tree	data	structure
is	recursive	which	means	a	tree	can	contain	many	subtrees.	Nodes	are	connected	with	each	other	through
edges.	We	are	going	to	discuss	different	types	of	trees,	their	operations,	and	purposes	in	Chapter	6,
Understanding	and	Implementing	Trees.

	

	

Graph
A	graph	data	structure	is	a	special	type	of	nonlinear	data	structure	which	consists	of	a	finite	number	of
vertices	or	nodes,	and	edges	or	arcs.	A	graph	can	be	both	directed	and	undirected.	A	directed	graph
clearly	indicates	the	direction	of	the	edges,	while	an	undirected	graph	mentions	the	edges,	not	the
direction.	As	a	result,	in	an	undirected	graph,	both	directions	of	edge	are	considered	as	a	single	edge.	In
other	words,	we	can	say	a	graph	is	a	pair	of	sets	(V,	E),	where	V	is	the	set	of	vertices	and	E	is	the	set	of
edges:	V	=	{A,	B,	C,	D,	E,	F}

E	=	{AB,	BC,	CE,	ED,	EF,	DB}

In	a	directed	graph,	an	edge	AB	is	different	from	an	edge	BA	while	in	an	undirected	graph,	both	AB	and	BA
are	the	same.	Graphs	are	handy	to	solve	lots	of	complex	problems	in	the	programming	world.	We	are
going	to	continue	our	discussion	of	graph	data	structures	in	Chapter	9,	Putting	Graphs	into	Action.	In	the

following	diagram,	we	have:	

	

Heap
	

A	heap	is	a	special	tree-based	data	structure	which	satisfies	the	heap	properties.	The	largest	key	is	the
root	and	smaller	keys	are	leaves,	which	is	known	as	max	heap.	Or,	the	smallest	key	is	the	root	and	larger
keys	are	leaves,	which	is	known	as	min	heap.	Though	the	root	of	a	heap	structure	is	either	the	largest	or
smallest	key	of	the	tree,	it	is	not	necessarily	a	sorted	structure.	A	heap	is	used	for	solving	graph
algorithms	with	efficiency	and	also	in	sorting.	We	are	going	to	explore	heap	data	structures	in	Chapter	10,
Understanding	and	Using	Heaps.

	

	

Solving	a	problem	-	algorithmic	approach
So	far	we	have	discussed	different	types	of	data	structures	and	their	usage.	But,	one	thing	we	have	to
remember	is	that	just	putting	data	in	a	proper	structure	might	not	solve	our	problems.	We	need	to	find
solutions	to	our	problems	using	the	help	of	data	structures	or,	in	other	words,	we	are	going	to	solve
problems	using	data	structures.	We	need	algorithms	to	solve	our	problem.

An	algorithm	is	a	step	by	step	process	which	defines	the	set	of	instructions	to	be	executed	in	a	certain
order	to	get	a	desired	output.	In	general,	algorithms	are	not	limited	to	any	programming	language	or
platform.	They	are	independent	of	programming	languages.	An	algorithm	must	have	the	following
characteristics:

Input:	An	algorithm	must	have	well-defined	input.	It	can	be	0	or	more	inputs.
Output:	An	algorithm	must	have	well-defined	output.	It	must	match	the	desired	output.
Precision:	All	steps	are	precisely	defined.
Finiteness:	An	algorithm	must	stop	after	a	certain	number	of	steps.	It	should	not	run	indefinitely.
Unambiguous:	An	algorithm	should	be	clear	and	should	not	have	any	ambiguity	in	any	of	the	steps.
Independent:	An	algorithm	should	be	independent	of	any	programming	language	or	platforms.

Let	us	now	create	an	algorithm.	But	in	order	to	do	that,	we	need	a	problem	statement.	So	let	us	assume
that	we	have	a	new	shipment	of	books	for	our	library.	There	are	1000	books	and	they	are	not	sorted	in	any
particular	order.	We	need	to	find	books	as	per	the	list	and	store	them	in	their	designated	shelves.	How	do
we	find	them	from	the	pile	of	books?

Now,	we	can	solve	the	problem	in	different	ways.	Each	way	has	a	different	approach	to	find	out	a
solution	for	the	problem.	We	call	these	approaches	algorithms.	To	keep	the	discussion	short	and	precise,
we	are	going	to	only	consider	two	approaches	to	solve	the	problem.	We	know	there	are	several	other
ways	as	well	but	for	simplicity	let	us	keep	our	discussion	only	for	one	algorithm.

We	are	going	to	store	the	books	in	a	simple	row	so	that	we	can	see	the	book	names.	Now,	we	will	pick	a
book	name	from	the	list	and	search	from	one	end	of	the	row	to	the	other	end	till	we	find	the	book.	So
basically,	we	are	going	to	follow	a	sequential	search	for	each	of	the	books.	We	will	repeat	these	steps
until	we	place	all	books	in	their	designated	places.

Writing	pseudocode
Computer	programs	are	written	for	machine	reading.	We	have	to	write	them	in	a	certain	format	which	will
be	compiled	for	the	machine	to	understand.	But	often	those	written	codes	are	not	easy	to	follow	for
people	other	than	programmers.	In	order	to	show	those	codes	in	an	informal	way	so	that	humans	can	also
understand,	we	prepare	pseudocode.	Though	it	is	not	an	actual	programming	language	code,	pseudocode
has	similar	structural	conventions	of	a	programming	language.	Since	pseudocode	does	not	run	as	a	real
program,	there	is	no	standard	way	of	writing	a	pseudocode.	We	can	follow	our	own	way	of	writing	a
pseudocode.

Here	is	the	pseudocode	for	our	algorithm	to	find	a	book:

Algorithm	FindABook(L,book_name)	

		Input:	list	of	Books	L	&	name	of	the	search	book_name	

		Output:	False	if	not	found	or	position	of	the	book	we	are	looking	for.	

		if	L.size	=	0	return	null	

		found	:=	false	

		for	each	item	in	L,	do	

				if	item	=	book_name,	then	

						found	:=	position	of	the	item	

		return	found	

Now,	let	us	examine	the	pseudocode	we	have	written.	We	are	supplying	a	list	of	books	and	a	name	that
we	are	searching.	We	are	running	a	foreach	loop	to	iterate	each	of	the	books	and	matching	with	the	book
name	we	are	searching.	If	it	is	found,	we	are	returning	the	position	of	the	book	where	we	found	it,	false
otherwise.	So,	we	have	written	a	pseudocode	to	find	a	book	name	from	our	book	list.	But	what	about	the
other	remaining	books?	How	do	we	continue	our	search	till	all	books	are	found	and	placed	on	the	right
shelf?:

Algorithm	placeAllBooks	

				Input:	list	of	Ordered	Books	OL,	List	of	received	books	L	

				Output:	nothing.	

				for	each	book_name	in	OL,	do	

							if	FindABook(L,book_name),	then	

									remove	the	book	from	the	list	L	

									place	it	to	the	bookshelf	

Now	we	have	the	complete	pseudocode	for	our	algorithm	of	solving	the	book	organization	problem.	Here,
we	are	going	through	the	list	of	ordered	books	and	finding	the	book	in	the	delivered	section.	If	the	book	is
found,	we	are	removing	it	from	the	list	and	placing	it	to	the	right	shelf.

This	simple	approach	of	writing	pseudocode	can	help	us	solve	more	complex	problems	in	a	structured
manner.	Since	pseudocodes	are	independent	of	programming	languages	and	platforms,	algorithms	are
expressed	as	pseudocode	most	of	the	time.

Converting	pseudocode	to	actual	code
We	are	now	going	to	convert	our	pseudocodes	to	actual	PHP	7	codes	as	shown:

function	findABook(Array	$bookList,	String	$bookName)	{	

				$found	=	FALSE;	

				foreach($bookList	as	$index	=>	$book)	{	

								if($book	===	$bookName)	{	

													$found	=	$index;	

													break;	

								}	

				}	

				return	$found;	

}	

function	placeAllBooks(Array	$orderedBooks,	Array	&$bookList)	{	

				foreach	($orderedBooks	as	$book)	{	

				$bookFound	=	findABook($bookList,	$book);	

				if($bookFound	!==	FALSE)	{	

								array_splice($bookList,	$bookFound,	1);	

				}	

		}	

}	

$bookList	=	['PHP','MySQL','PGSQL','Oracle','Java'];	

$orderedBooks	=	['MySQL','PGSQL','Java'];	

placeAllBooks($orderedBooks,	$bookList);

echo	implode(",",	$bookList);	

Let	us	now	understand	what	is	happening	in	the	preceding	code.	First	we	have	defined	a	new	function,
findABook	at	the	beginning	of	the	code.	The	function	is	defined	with	two	parameters.	One	is	Array	$bookList
and	the	other	is	String	$bookName.	At	the	beginning	of	the	function	we	are	initializing	the	$found	to	FALSE,	which
means	nothing	has	been	found	yet.	The	foreach	loop	iterates	through	the	book	list	array	$bookList	and	for
each	book,	it	matches	with	our	provided	book	name	$bookName.	If	the	book	name	that	we	are	looking	for
matches	with	the	book	in	the	$bookList,	we	are	assigning	the	index	(where	we	found	the	match)	to	our	$found
variable.	Since	we	have	found	it,	there	is	no	point	in	continuing	the	loop.	So,	we	have	used	the	break
command	to	get	out	of	the	loop.	Just	out	of	the	loop	we	are	returning	our	$found	variable.	If	the	book	was
found,	usually	$found	will	return	any	integer	value	greater	than	0,	else	it	will	return	false:

function	placeAllBooks(Array	$orderedBooks,	Array	&$bookList)	{	

				foreach	($orderedBooks	as	$book)	{	

				$bookFound	=	findABook($bookList,	$book);	

				if($bookFound	!==	FALSE)	{	

								array_splice($bookList,	$bookFound,	1);	

				}	

		}	

}	

This	particular	function	placeAllBooks	actually	iterates	through	our	ordered	books	$orderedBooks.	We	are
iterating	our	ordered	book	list	and	searching	each	book	in	our	delivered	list	using	the	findABook	function.	If
the	book	is	found	in	the	ordered	list	($bookFound	!==	FALSE),	we	are	removing	that	book	from	the	delivered
book	list	using	the	array_splice()	function	of	PHP:

$bookList	=	['PHP','MySQL','PGSQL','Oracle','Java'];

$orderedBooks	=	['MySQL','PGSQL','Java'];

These	two	lines	actually	shows	two	PHP	arrays	which	are	used	for	the	list	of	books	we	have	received,
$bookList	and	the	list	of	books	we	have	actually	ordered	$orderedBooks.	We	are	just	using	some	dummy	data

to	test	our	implemented	code	as	shown:

placeAllBooks($orderedBooks,	$bookList);

The	last	part	of	our	code	actually	calls	the	function	placeAllBooks	to	perform	the	whole	operation	of
checking	each	book	searching	for	it	in	our	received	books	and	removing	it,	if	it	is	in	the	list.	So	basically,
we	have	implemented	our	pseudocode	to	an	actual	PHP	code	which	we	can	use	to	solve	our	problem.

Algorithm	analysis
We	have	completed	our	algorithm	in	the	previous	section.	But	one	thing	we	have	not	done	yet	is	the
analysis	of	our	algorithm.	A	valid	question	in	the	current	scenario	can	be,	why	do	we	really	need	to	have
an	analysis	of	our	algorithm?	Though	we	have	written	the	implementation,	we	are	not	sure	about	how
many	resources	our	written	code	will	utilize.	When	we	say	resource,	we	mean	both	time	and	storage
resource	utilized	by	the	running	application.	We	write	algorithms	to	work	with	any	length	of	the	input.	In
order	to	understand	how	our	algorithm	behaves	when	the	input	grows	larger	and	how	many	resources
have	been	utilized,	we	usually	measure	the	efficiency	of	an	algorithm	by	relating	the	input	length	to	the
number	of	steps	(time	complexity)	or	storage	(space	complexity).	It	is	very	important	to	do	the	analysis	of
algorithms	in	order	to	find	the	most	efficient	algorithm	to	solve	the	problem.

We	can	do	algorithm	analysis	in	two	different	stages.	One	is	done	before	implementation	and	one	after	the
implementation.	The	analysis	we	do	before	implementation	is	also	known	as	theoretical	analysis	and	we
assume	that	other	factors	such	as	processing	power	and	spaces	are	going	to	be	constant.	The	after
implementation	analysis	is	known	as	empirical	analysis	of	an	algorithm	which	can	vary	from	platform	to
platform	or	from	language	to	language.	In	empirical	analysis,	we	can	get	solid	statistics	from	the	system
regarding	time	and	space	utilization.

For	our	algorithm	to	place	the	books	and	finding	the	books	from	purchased	items,	we	can	perform	a
similar	analysis.	At	this	time,	we	will	be	more	concerned	about	the	time	complexity	rather	than	the	space
complexity.	We	will	explore	space	complexity	in	coming	chapters.

Calculating	the	complexity
There	are	two	types	of	complexity	we	measure	in	algorithmic	analysis:

Time	complexity:	Time	complexity	is	measured	by	the	number	of	key	operations	in	the	algorithm.	In
other	words,	time	complexity	quantifies	the	amount	of	time	taken	by	an	algorithm	from	start	to	finish.
Space	complexity:	Space	complexity	defines	the	amount	of	space	(in	memory)	required	by	the
algorithm	in	its	life	cycle.	It	depends	on	the	choice	of	data	structures	and	platforms.

Now	let	us	focus	on	our	implemented	algorithm	and	find	about	the	operations	we	are	doing	for	the
algorithm.	In	our	placeAllBooks	function,	we	are	searching	for	each	of	our	ordered	books.	So	if	we	have	10
books,	we	are	doing	the	search	10	times.	If	the	number	is	1000,	we	are	doing	the	search	1000	times.	So
simply,	we	can	say	if	there	is	n	number	of	books,	we	are	going	to	search	it	n	number	of	times.	In	algorithm
analysis,	input	number	is	mostly	represented	by	n.

For	each	item	in	our	ordered	books,	we	are	doing	a	search	using	the	findABook	function.	Inside	the	function,
we	are	again	searching	through	each	of	the	received	books	with	a	name	we	received	from	the	placeAllBooks
function.	Now	if	we	are	lucky	enough,	we	can	find	the	name	of	the	book	at	the	beginning	of	the	list	of
received	books.	In	that	case,	we	do	not	have	to	search	the	remaining	items.	But	what	if	we	are	very
unlucky	and	the	book	we	are	searching	for	is	at	the	end	of	the	list?	We	then	have	to	search	each	of	the
books	and,	at	the	end,	we	find	it.	If	the	number	of	received	books	is	also	n,	then	we	have	to	run	the
comparison	n	times.

If	we	assume	that	other	operations	are	fixed,	the	only	variable	should	be	the	input	size.	We	can	then	define
a	boundary	or	mathematical	equation	to	define	the	situation	to	calculate	its	runtime	performance.	We	call
it	asymptotical	analysis.	Asymptotical	analysis	is	input	bound	which	means	if	there	is	no	input,	other
factors	are	constant.	We	use	asymptotical	analysis	to	find	out	the	best	case,	worst	case,	and	average	case
scenario	of	algorithms:

Best	case:	Best	case	indicates	the	minimum	time	required	to	execute	the	program.	For	our	example
algorithm,	the	best	case	can	be	that,	for	each	book,	we	are	only	searching	the	first	item.	So,	we	end
up	searching	for	a	very	little	amount	of	time.	We	use	Ω	notation	(Sigma	notation)	to	indicate	the	best
case	scenario.
Average	case:	It	indicates	the	average	time	required	to	execute	a	program.	For	our	algorithm	the
average	case	will	be	finding	the	books	around	the	middle	of	the	list	most	of	the	time,	or	half	of	the
time	they	are	at	the	beginning	of	the	list	and	the	remaining	half	are	at	the	end	of	the	list.
Worst	case:	It	indicates	the	maximum	running	time	for	a	program.	The	worst	case	example	will	be
finding	the	books	at	the	end	of	the	list	all	the	time.	We	use	the	O	(big	oh)	notation	to	describe	the
worst	case	scenario.	For	each	book	searching	in	our	algorithm,	it	can	take	O(n)	running	time.	From
now	on,	we	will	use	this	notation	to	express	the	complexity	of	our	algorithm.

Understanding	the	big	O	(big	oh)	notation
The	big	O	notation	is	very	important	for	the	analysis	of	algorithms.	We	need	to	have	a	solid	understanding
of	this	notation	and	how	to	use	this	in	the	future.	We	are	going	to	discuss	the	big	O	notation	throughout	this
section.

Our	algorithm	for	finding	the	books	and	placing	them	has	n	number	of	items.	For	the	first	book	search,	it
will	compare	n	number	of	books	for	the	worst	case	situation.	If	we	say	time	complexity	is	T,	then	for	the
first	book	the	time	complexity	will	be:

T(1)	=	n

As	we	are	removing	the	founded	book	from	the	list,	the	size	of	the	list	is	now	n-1.	For	the	second	book
search,	it	will	compare	n-1	number	of	books	for	the	worst	case	situation.	Then	for	the	second	book,	the
time	complexity	will	be	n-1.	Combining	the	both	time	complexities,	for	first	two	books	it	will	be:

T(2)	=	n	+	(n	-	1)

If	we	continue	like	this,	after	the	n-1	steps	the	last	book	search	will	only	have	1	book	left	to	compare.	So,
the	total	complexity	will	look	like:

T(n)	=	n	+	(n	-	1)	+	(n	-	2)	+	+	3	+	2	+	1	

Now	if	we	look	at	the	preceding	series,	doesn't	it	look	familiar?	It	is	also	known	as	the	sum	of	n	numbers
equation	as	shown:

So	we	can	write:

T(n)	=	n(n	+	1)/2	

Or:

T(n)	=	n2/2	+	n/2	

For	asymptotic	analysis,	we	ignore	low	order	terms	and	constant	multipliers.	Since	we	have	n2,	we	can
easily	ignore	the	n	here.	Also,	the	1/2	constant	multiplier	can	also	be	ignored.	Now	we	can	express	the
time	complexity	with	the	big	O	notation	as	the	order	of	n	squared:

T(n)	=	O(n2)	

Throughout	the	book,	we	will	be	using	this	big	O	notation	to	describe	complexity	of	the	algorithms	or
operations.	Here	are	some	common	big	O	notations:

Type Notation

Constant O	(1)

Linear O	(n)

Logarithmic O	(log	n)

n	log	n O	(n	log	n)

Quadratic O	(n2)

Cubic O	(n3)

Exponential O	(2n)

Standard	PHP	Library	(SPL)	and	data
structures
The	Standard	PHP	Library	(SPL),	is	one	of	the	best	possible	features	of	the	PHP	language	in	last	few
years.	SPL	was	created	to	solve	common	problems	which	were	lacking	in	PHP.	SPL	extended	the
language	in	many	ways	but	one	of	the	striking	features	of	SPL	is	its	support	of	data	structures.	Though	SPL
is	used	for	many	other	purposes,	we	are	going	to	focus	on	the	data	structure	part	of	SPL.	SPL	comes	with
core	PHP	installations	and	does	not	require	any	extension	or	change	in	configurations	to	enable	it.

SPL	provides	a	set	of	standard	data	structures	through	Object-Oriented	Programming	in	PHP.	The
supported	data	structures	are:

Doubly	linked	lists:	It	is	implemented	in	SplDoublyLinkedList.
Stack:	It	is	implemented	in	SplStack	by	using	SplDoublyLinkedList.
Queue:	It	is	implemented	in	SplQueue	by	using	SplDoublyLinkedList.
Heaps:	It	is	implemented	in	SplHeap.	It	also	supports	max	heap	in	SplMaxHeap	and	min	heap	in	SplMinHeap.
Priority	queue:	It	is	implemented	in	SplPriorityQueue	by	using	SplHeap.
Arrays:	It	is	implemented	in	SplFixedArray	for	a	fixed	size	array.
Map:	It	is	implemented	in	SplObjectStorage.

In	coming	chapters,	we	are	going	to	explore	each	of	the	SPL	data	structure	implementations	and	know
their	pros	and	cons,	along	with	their	performance	analysis	with	our	implementation	of	corresponding	data
structures.	But	as	these	data	structures	are	already	built	in,	we	can	use	them	for	a	quick	turnaround	of
features	and	applications.

After	the	release	of	PHP	7,	everyone	was	happy	with	the	performance	boost	of	the	PHP	application	in
general.	PHP	SPL	is	not	having	the	similar	performance	boost	in	many	cases,	but	we	are	going	to	analyze
those	in	upcoming	chapters.

	

Summary
	

In	this	chapter,	we	have	focused	our	discussion	on	basic	data	structures	and	their	names.	We	have	also
learned	about	solving	problems	with	defined	steps,	known	as	algorithms.	We	have	also	learned	about
analyzing	the	algorithms	and	the	big	O	notation	along	with	how	to	calculate	the	complexity.	We	had	a
simple	brief	about	the	built-in	data	structures	in	PHP	in	the	form	of	SPL.

In	the	next	chapter,	we	are	going	to	focus	on	the	PHP	array,	one	of	the	most	powerful,	flexible	data	types
in	PHP.	We	are	going	to	explore	different	uses	of	the	PHP	array	to	implement	different	data	structures	such
as	hash	table,	map,	structs,	and	so	on.

	

	

	

Understanding	PHP	Arrays
	

The	PHP	array	is	one	of	the	most	used	data	types	in	PHP.	Most	of	the	time	we	use	it	without	considering
the	impact	of	PHP	arrays	in	our	developed	code	or	application.	It	is	so	easy	to	use	and	dynamic	in	nature;
we	love	to	use	PHP	arrays	for	almost	any	purpose.	Sometimes	we	do	not	even	want	to	explore	if	there	are
other	available	solutions	which	can	be	used	instead	of	PHP	array.	In	this	chapter,	we	are	going	to	explore
the	positives	and	negatives	of	PHP	arrays,	along	with	how	to	use	arrays	in	different	data	structure
implementations	along	with	boosting	performances.	We	will	start	with	explaining	different	types	of	arrays
in	PHP	followed	by	creating	fixed	sized	arrays.	Then	we	are	going	to	see	the	memory	footprints	for	PHP
array	elements	and	how	can	we	improve	them	along	with	some	data	structure	implementations.

	

	

Understanding	PHP	arrays	in	a	better	way
PHP	arrays	are	so	dynamic	and	flexible	that	we	have	to	think	about	whether	it	is	a	regular	array,	an
associative	array,	or	a	multidimensional	array,	as	in	some	other	languages.	We	do	not	need	to	define	the
size	and	data	type	of	the	array	we	are	going	to	use.	How	can	PHP	do	that,	while	other	languages	like	C
and	Java	cannot	do	the	same?	The	answer	is	very	simple:	the	array	concept	in	PHP	is	not	actually	the	real
array,	it	is	actually	a	HashMap.	In	other	words,	a	PHP	array	is	not	the	plain	and	simple	array	concept	we
have	from	other	languages.	A	simple	array	will	look	like	this:

But,	we	can	definitely	do	that	with	PHP.	Let	us	check	with	an	example:

$array	=	[1,2,3,4,5];

This	line	shows	how	a	typical	array	should	look.	Similar	types	of	data	have	a	sequential	index	(starting
from	0	to	4)	to	access	the	values.	So	who	says	a	PHP	array	is	not	a	typical	array?	Let	us	explore	some
more	examples.	Consider	the	following:

$mixedArray	=	[];

$mixedArray[0]	=	200;

$mixedArray['name']	=	"Mixed	array";

$mixedArray[1]	=	10.65;

$mixedArray[2]	=	['I',	'am',	'another',	'array'];

It	is	a	PHP	array	that	we	use	on	a	daily	basis;	we	do	not	define	the	size	and	we	are	storing	integers,	a
floating	point	number,	a	string,	and	even	another	array.	Does	it	sound	odd	or	is	it	just	a	super	power	of
PHP?	We	can	look	at	the	definition	from	http://php.net.

An	array	in	PHP	is	actually	an	ordered	map.	A	map	is	a	type	that	associates	values	to
keys.	This	type	is	optimized	for	several	different	uses;	it	can	be	treated	as	an	array,	list
(vector),	hash	table	(an	implementation	of	a	map),	dictionary,	collection,	stack,	queue,
and	probably	more.	As	array	values	can	be	other	arrays,	trees	and	multidimensional
arrays	are	also	possible.

So	a	PHP	array	has	got	real	super	powers	and	it	can	be	used	for	all	possible	data	structures	such	as
list/vector,	hash	table,	dictionary,	collection,	stack,	queue,	doubly	linked	list,	and	so	on.	It	seems	that	the
PHP	array	has	been	built	in	such	a	way	that	it	is	either	optimized	for	everything	or	it	is	not	optimized	for
anything.	We	will	explore	that	in	this	chapter.

If	we	want	to	categorize	the	array,	then	there	are	mainly	three	types	of	arrays:

Numeric	array
Associative	array
Multidimensional	array

http://php.net

We	are	going	to	explore	each	type	of	array	with	some	examples	and	explanations.

Numeric	array
A	numeric	array	does	not	mean	it	only	holds	numeric	data.	In	fact,	it	means	the	indexes	will	be	numbers
only.	In	PHP	they	can	either	be	sequential	or	non-sequential	but	they	have	to	be	numeric.	In	numeric
arrays,	values	are	stored	and	accessed	in	a	linear	way.	Here	are	some	examples	of	PHP	numeric	array:

$array	=	[10,20,30,40,50];	

$array[]	=	70;		

$array[]	=	80;	

$arraySize	=	count($array);	

for($i	=	0;$i<$arraySize;$i++)	{	

				echo	"Position	".$i."	holds	the	value	".$array[$i]."\n";	

}	

This	will	have	the	following	output:

Position	0	holds	the	value	10	

Position	1	holds	the	value	20	

Position	2	holds	the	value	30	

Position	3	holds	the	value	40	

Position	4	holds	the	value	50	

Position	5	holds	the	value	70	

Position	6	holds	the	value	80	

This	is	a	very	simple	example	where	we	have	an	array	defined	and	indexes	are	autogenerated	from	0	and
incremented	with	the	value	of	the	array.	When	we	add	a	new	element	in	the	array	using	$array[],	it	actually
increments	the	index	and	assigns	the	value	in	the	new	index.	That	is	why	value	70	has	the	index	5	and	80
has	the	index	6.

If	our	data	is	sequential,	we	can	always	use	a	for	loop	without	any	problem.	When	we	say	sequential,	we
do	not	mean	just	0,1,2,3....,n.	It	can	be	0,5,10,15,20,......,n	where	n	is	a	multiple	of	5.	Or	it	can	be
1,3,5,7,9......,n	where	n	is	odd.	We	can	create	hundreds	of	such	sequences	to	make	the	array	numeric.

A	big	question	can	be,	if	the	indexes	are	not	sequential,	can't	we	construct	a	numeric	array?	Yes	definitely
we	can.	We	just	have	to	adopt	a	different	way	to	iterate.	Consider	the	following	example:

$array	=	[];	

$array[10]	=	100;	

$array[21]	=	200;	

$array[29]	=	300;	

$array[500]	=	1000;	

$array[1001]	=	10000;	

$array[71]	=	1971;	

foreach($array	as	$index	=>	$value)	{	

				echo	"Position	".$index."	holds	the	value	".$value."\n";	

}	

If	we	look	at	the	indexes,	they	are	not	sequential.	They	are	having	random	indexes	such	as	10	followed	by
21,	29,	and	so	on.	Even	at	the	end	we	have	the	index	71,	which	is	much	smaller	than	the	previous	one	of
1001.	So,	should	the	last	index	show	in	between	29	and	500?	Here	is	the	output:

Position	10	holds	the	value	100	

Position	21	holds	the	value	200	

Position	29	holds	the	value	300	

Position	500	holds	the	value	1000	

Position	1001	holds	the	value	10000	

Position	71	holds	the	value	1971	

Couple	of	things	to	notice	here:

We	are	iterating	the	array	the	way	we	entered	the	data.	There	is	no	internal	sorting	of	the
indexes	at	all,	though	they	are	all	numeric.
Another	interesting	fact	is	that	the	size	of	the	array	$array	is	only	6.	It	is	not	1002	like	C++,
Java,	or	other	languages	where	we	need	to	predefine	the	size	of	the	array	before	using	it,
and	the	max	index	can	be	n-1	where	n	is	the	size	of	the	array.

Associative	array
An	associative	array	is	accessed	by	a	key	which	can	be	any	string.	In	an	associative	array,	values	are
stored	against	the	key	instead	of	a	linear	index.	We	can	use	an	associative	array	to	store	any	type	of	data,
just	like	the	numeric	array.	Let	us	create	a	student	array	where	we	will	store	student	information:
$studentInfo	=	[];	
$studentInfo['Name']	=	"Adiyan";	
$studentInfo['Age']	=	11;	
$studentInfo['Class']	=	6;	
$studentInfo['RollNumber']	=	71;	
$studentInfo['Contact']	=	"info@adiyan.com";	

foreach($studentInfo	as	$key	=>	$value)	{	
echo	$key.":	".$value."\n";	
}

Here	is	the	output	of	the	code:

Name:	Adiyan	

Age:	11	

Class:	6	

RollNumber:	71	

Contact:	info@adiyan.com	

Here	we	are	using	each	key	to	hold	one	piece	of	data.	We	can	add	as	many	keys	as	we	need	without	any
problem.	This	gives	us	the	flexibility	to	represent	a	data	structure	similar	to	structure,	map,	and	dictionary
using	a	PHP	associative	array.

Multidimensional	array
A	multidimensional	array	contains	multiple	arrays	in	it.	In	other	words,	it	is	an	array	of	array(s).	In	this
book,	we	will	be	using	multidimensional	arrays	in	different	examples	as	they	are	one	of	the	most	popular
and	efficient	ways	of	storing	data	for	graphs	and	other	tree-type	data	structures.	Let	us	explore	the	PHP
multidimensional	array	using	an	example:

$players	=	[];

$players[]	=	["Name"	=>	"Ronaldo",	"Age"	=>	31,	"Country"	=>	"Portugal",	"Team"	=>	"Real	Madrid"];

$players[]	=	["Name"	=>	"Messi",	"Age"	=>	27,	"Country"	=>	"Argentina",	"Team"	=>	"Barcelona"];

$players[]	=	["Name"	=>	"Neymar",	"Age"	=>	24,	"Country"	=>	"Brazil",	"Team"	=>	"Barcelona"];

$players[]	=	["Name"	=>	"Rooney",	"Age"	=>	30,	"Country"	=>	"England",	"Team"	=>	"Man	United"];

foreach($players	as	$index	=>	$playerInfo)	{	

				echo	"Info	of	player	#	".($index+1)."\n";

				foreach($playerInfo	as	$key	=>	$value)	{	

								echo	$key.":	".$value."\n";

				}	

				echo	"\n";

}	

The	example	we	just	saw	is	an	example	of	a	two-dimensional	array.	As	a	result,	we	are	using	two	foreach
loops	to	iterate	the	two-dimensional	array.	Here	is	the	output	of	the	code:

Info	of	player	#	1	

Name:	Ronaldo	

Age:	31	

Country:	Portugal	

Team:	Real	Madrid	

Info	of	player	#	2	

Name:	Messi	

Age:	27	

Country:	Argentina	

Team:	Barcelona	

Info	of	player	#	3	

Name:	Neymar	

Age:	24	

Country:	Brazil	

Team:	Barcelona	

Info	of	player	#	4	

Name:	Rooney	

Age:	30	

Country:	England	

Team:	Man	United		

We	can	create	n-dimensional	arrays	using	PHP	as	per	our	needs,	but	we	have	to	remember	one	thing:	the
more	dimensions	we	add,	the	more	complex	the	structure	becomes.	We	as	humans	usually	visualize	three
dimensions,	so	in	order	to	have	more	than	three-dimensional	arrays,	we	must	have	a	solid	understanding
of	how	an	array	works	in	multiple	dimensions.

We	can	use	both	a	numeric	array	and	an	associative	array	as	a	single	array	in	PHP.	But
in	such	a	case,	we	have	to	be	very	cautious	to	choose	the	right	way	to	iterate	through	the
array	elements.	In	such	cases,	foreach	will	be	a	better	choice	than	a	for	or	while	loop.

	

Using	an	array	as	flexible	storage
	

So	far	we	have	seen	a	PHP	array	as	a	dynamic,	hybrid	data	structure	for	storing	any	type	of	data.	This
gives	us	a	lot	more	freedom	to	utilize	an	array	as	a	flexible	storage	container	for	our	data.	We	can	mix
different	data	types	and	different	dimensions	of	data	in	a	single	array.	We	do	not	have	to	even	define	the
size	or	type	of	array	we	are	going	to	use.	We	can	grow,	shrink,	and	modify	data	to	and	from	an	array
whenever	we	need	to.

Not	only	does	PHP	allows	us	to	create	dynamic	arrays,	but	it	also	provides	us	with	lots	of	built-in
functionalities	for	arrays.	For	example:	array_intersect,	array_merge,	array_diff,	array_push,	array_pop,	prev,	next,
current,	end,	and	many	more.

	

	

Use	of	multi-dimensional	arrays	to	represent
data	structures
In	coming	chapters,	we	will	talk	about	many	different	data	structures	and	algorithms.	One	of	the	key	data
structures	we	are	going	to	focus	is	the	graph.	We	already	know	the	definition	of	graph	data	structures.
Most	of	the	time	we	will	be	using	PHP	multidimensional	arrays	to	represent	that	data	as	an	adjacency
matrix.	Let	us	consider	the	following	graph	diagram:

Now	if	we	consider	each	node	of	the	graph	to	be	a	value	of	an	array,	we	can	represent	the	nodes	as:

$nodes	=	['A',	'B',	'C',	'D',	'E'];

But	this	will	only	give	us	node	names.	We	cannot	connect	or	create	a	relationship	between	nodes.	In	order
to	do	that,	we	need	to	construct	a	two-dimensional	array	where	the	node	names	will	be	keys,	and	values
will	be	0	or	1	based	on	the	interconnectivity	of	two	nodes.	Since	there	is	no	direction	provided	in	the
graph,	we	do	not	know	if	A	connects	to	C	or	if	Connects	to	A.	So	we	will	assume	both	are	connected	to
each	other.

First,	we	need	to	create	an	array	for	the	graph	and	initialize	each	node	of	the	two-dimensional	arrays	as	0.
The	following	code	will	exactly	do	that:

$graph	=	[];

$nodes	=	['A',	'B',	'C',	'D',	'E'];

foreach	($nodes	as	$xNode)	{

				foreach	($nodes	as	$yNode)	{

								$graph[$xNode][$yNode]	=	0;

				}

}

Let	us	print	the	array	using	the	following	code	so	that	we	see	how	it	looks	actually	before	defining	the
connectivity	between	nodes:

foreach	($nodes	as	$xNode)	{

				foreach	($nodes	as	$yNode)	{

								echo	$graph[$xNode][$yNode]	.	"\t";

				}

				echo	"\n";

}

As	no	connection	between	the	nodes	has	been	defined,	all	cells	are	showing	0.	So	the	output	looks	like
this:

0							0							0							0							0

0							0							0							0							0

0							0							0							0							0

0							0							0							0							0

0							0							0							0							0

Now	we	will	define	the	connectivity	of	the	nodes	in	such	a	way	that	a	connection	between	the	two	nodes
will	be	expressed	as	a	value	of	1,	just	like	the	following	code:

$graph["A"]["B"]	=	1;

$graph["B"]["A"]	=	1;

$graph["A"]["C"]	=	1;

$graph["C"]["A"]	=	1;

$graph["A"]["E"]	=	1;

$graph["E"]["A"]	=	1;

$graph["B"]["E"]	=	1;

$graph["E"]["B"]	=	1;

$graph["B"]["D"]	=	1;

$graph["D"]["B"]	=	1;

As	there	is	no	direction	given	in	the	graph	diagram,	we	will	consider	it	as	the	undirected	graph	and	hence
we	are	setting	two	values	to	1	for	each	connection.	For	the	connection	between	A	and	B,	we	are	setting
both	$graph["A"]["B"]	and	$graph["B"]["A"]	to	1.	We	will	learn	more	about	defining	connectivity	between	nodes
and	why	we	are	doing	it	in	later	chapters.	For	now	we	are	just	focusing	on	how	to	use	multidimensional
arrays	for	data	structures.	We	can	reprint	the	matrix	and	this	time,	the	output	looks	like	this:

0							1							1							0							1

1							0							0							1							1

1							0							0							0							0

0							1							0							0							0

1							1							0							0							0

It	will	be	much	more	fun	and	interesting	to	find	out	more	about	graphs	and	their	operations	in	Chapter	9,
Putting	Graphs	into	Action.

Creating	fixed	size	arrays	with	the
SplFixedArray	method
So	far,	we	have	explored	PHP	arrays	and	we	know,	we	do	not	define	the	size	of	the	arrays.	PHP	arrays
can	grow	or	shrink	as	per	our	demand.	This	flexibility	comes	with	a	great	inconvenience	regarding
memory	usage.	We	are	going	to	explore	that	in	this	section.	For	now,	let	us	focus	on	creating	fixed	size
arrays	using	the	SPL	library.

Why	do	we	need	a	fixed	size	array?	Does	it	have	any	added	advantage?	The	answer	is	that	when	we
know	we	only	need	a	certain	number	of	elements	in	an	array,	we	can	use	a	fixed	array	to	reduce	the
memory	usage.	Before	going	to	the	memory	use	analysis,	let	us	have	some	examples	of	using	the
SplFixedArray	method:

$array	=	new	SplFixedArray(10);

for	($i	=	0;	$i	<	10;	$i++)

				$array[$i]	=	$i;

for	($i	=	0;	$i	<	10;	$i++)

				echo	$array[$i]	.	"\n";

First,	we	are	creating	a	new	SplFixedArray	object	with	a	defined	size	of	10.	The	remaining	lines	actually
follow	the	same	principle	which	we	use	in	regular	PHP	array	value	assignment	and	retrieval.	If	we	want
to	access	an	index	which	is	out	of	the	range	(here	it	is	10),	it	will	throw	an	exception:

PHP	Fatal	error:		Uncaught	RuntimeException:	Index	invalid	or	out	of	range

The	basic	difference	between	a	PHP	array	and	SplFixedArray	are:

SplFixedArray	must	have	a	fixed	defined	size
The	indexes	of	SplFixedArray	must	be	integers	and	within	the	range	of	0	to	n,	where	n	is	the	size	of	the
array	we	defined

The	SplFixedArray	method	can	be	very	handy	when	we	have	a	lot	of	defined	arrays	with	known	size	or	have
an	upper	limit	for	the	maximum	required	size	of	the	array.	But	if	we	do	not	know	the	array	size,	then	it	is
better	to	use	a	PHP	array.

Performance	comparison	between	a	regular	PHP
array	and	SplFixedArray
One	of	the	key	questions	we	encountered	in	the	last	section	was,	why	should	we	use	SplFixedArray	instead
of	PHP	arrays?	We	are	now	ready	to	explore	the	answer.	We	came	across	the	concept	that	PHP	arrays	are
actually	not	arrays	rather	than	hash	maps.	Let	us	run	a	small	example	code	in	PHP	5.x	version	to	see	the
memory	usage	of	a	PHP	array.

Let	us	create	an	array	with	100,000	unique	PHP	integers.	As	I	am	running	a	64	bit	machine,	I	expect	each
integer	to	take	8	bytes	each.	So	we	will	have	around	800,000	bytes	of	memory	consumed	for	the	array.
Here	is	the	code:

$startMemory	=	memory_get_usage();

$array	=	range(1,100000);

$endMemory	=	memory_get_usage();

echo	($endMemory	-	$startMemory)."	bytes";

If	we	run	this	code	in	our	command	prompt,	we	will	see	an	output	of	14,649,040	bytes.	Yes,	it	is	correct.
The	memory	usage	is	almost	18.5	times	more	than	what	we	have	planned	for.	That	means,	for	each
element	in	the	array	an	overhead	of	144	bytes	(18	*	8	bytes)	for	one	PHP	array.	Now,	where	does	this
extra	144	bytes	come	from	and	why	does	PHP	utilize	so	much	extra	memory	for	each	array	element?	Here
is	an	explanation	of	the	extra	bytes	used	by	a	PHP	array:

This	diagram	shows	how	a	PHP	array	works	internally.	It	stores	data	in	a	bucket	to	avoid	collision	and	to
accommodate	more	data.	To	manage	this	dynamic	nature,	it	implements	both	a	doubly	linked	list	and	hash
table	internally	for	array.	Eventually,	it	costs	lots	of	extra	memory	space	for	each	individual	elements	in
the	array.	Here	is	the	breakdown	of	the	memory	consumption	of	each	element	based	on	the	PHP	array
implementation	code	(C	code):

32	bit 64	bit

zval 16	bytes 24	bytes

+	cyclic	GC	info 4	bytes 8	bytes

+	allocation	header 8	bytes 16	bytes

zval	(value)	total 28	bytes 48	bytes

bucket 36	bytes 72	bytes

+	allocation	header 8	bytes 16	bytes

+	pointer 4	bytes 8	bytes

bucket	(array	element)	total 48	bytes 96	bytes

Grand	total	(bucket+zval) 76	bytes 144	bytes

In	order	to	understand	the	internal	structure	of	a	PHP	array,	we	need	to	study	in	depth
about	PHP	internals.	It	is	beyond	the	scope	of	this	particular	book.	A	good	recommended
read	is:	https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html

With	the	new	PHP	7	version,	there	is	a	very	big	improvement	in	the	PHP	array	and	how	it	is	constructed
internally.	As	a	result,	the	144	bytes	overhead	on	each	element	has	come	down	to	36	bytes	only.	That	is	a
big	improvement	and	it	is	applicable	for	both	32	bit	and	64	bit	OS.	A	comparison	chart,	having	a	range	of
100,000	items	in	an	array,	is	shown	as	follows:

$array	=	Range(1,100000) 32	bit 64	bit

PHP	5.6	or	below 7.4	MB 14	MB

PHP	7 3	MB 4	MB

So,	in	other	words,	PHP	7	has	an	improvement	factor	of	2.5	times	for	32	bit	and	3.5	times	for	64	bit
system	for	array	storage.	That	is	a	really	good	improvement.	But	this	was	all	about	a	PHP	array,	what

https://nikic.github.io/2011/12/12/How-big-are-PHP-arrays-really-Hint-BIG.html

about	SplFixedArray?	Let	us	run	the	same	example	using	SplFixArray	in	both	PHP	7	and	PHP	5.x:

$items	=	100000;	

$startMemory	=	memory_get_usage();	

$array	=	new	SplFixedArray($items);	

for	($i	=	0;	$i	<	$items;	$i++)	{	

				$array[$i]	=	$i;	

}	

$endMemory	=	memory_get_usage();	

$memoryConsumed	=	($endMemory	-	$startMemory)	/	(1024*1024);	

$memoryConsumed	=	ceil($memoryConsumed);	

echo	"memory	=	{$memoryConsumed}	MB\n";	

We	have	written	the	memory	consumption	functionality	of	a	SplFixedArray	here.	If	we	just	change	the	line
$array	=	new	SplFixedArray($items);	to	$array	=	[];,	we	will	have	the	same	code	running	as	for	a	PHP	array.

The	benchmark	result	can	vary	from	machine	to	machine	as	there	can	be	different	OS,
memory	size,	debugger	on/off,	and	so	on.	It	is	always	suggested	to	run	the	codes	in	your
own	machines	to	generate	a	similar	benchmark	for	comparisons.

Here	is	a	comparison	of	memory	consumption	of	a	PHP	array	and	SplFixedArray	for	an	array	with	100,000
integers	in	a	64	bit	system:

100,000	items Using	PHP	array SplFixedArray

PHP	5.6	or	below 14	MB 6	MB

PHP	7 5	MB 2	MB

Not	only	in	memory	usage,	SplFixedArray	is	also	faster	in	execution	compared	to	general	PHP	array
operations	such	as	accessing	value,	assigning	value,	and	so	on.

Though	we	use	the	SplFixedArray	object	with	[]	just	like	the	array,	PHP	array	functions	will
not	be	applicable	for	SplFixedArray.	We	cannot	directly	apply	any	PHP	array	functions	such
as	array_sum,	array_filter,	and	so	on.

More	examples	using	SplFixedArray
Since	SplFixedArray	has	a	good	performance	boost	indicator,	we	can	utilize	it	instead	of	a	regular	PHP	array
in	most	of	our	data	structures	and	algorithms.	Now	we	will	explore	some	more	examples	of	using
SplFixedArray	in	different	scenarios.

Changing	from	a	PHP	array	to	SplFixedArray
We	have	seen	how	we	can	create	a	SplFixedArray	with	a	fixed	length.	What	if	I	want	to	create	an	array	to
SplFixedArray	during	runtime?	The	following	code	block	shows	how	to	achieve	it:

$array	=[1	=>	10,	2	=>	100,	3	=>	1000,	4	=>	10000];	

$splArray	=	SplFixedArray::fromArray($array);	

print_r($splArray);	

Here	we	are	constructing	a	SplFixedArray	from	an	existing	array	$array	using	the	static	method	fromArray	of	the
SplFixedArray	class.	Then	we	are	printing	the	array	using	the	PHP	print_r	function.	It	will	show	an	output
like	this:

SplFixedArray	Object	

(

				[0]	=>	

				[1]	=>	10	

				[2]	=>	100	

				[3]	=>	1000	

				[4]	=>	10000	

)	

We	can	see	the	array	has	been	now	converted	to	an	SplFixedArray	and	it	maintained	the	index	number	exactly
as	it	was	in	the	actual	array.	Since	the	actual	array	did	not	have	0	index	defined,	here	index	0	is	kept	as
null.	But	if	we	want	to	ignore	the	indexes	from	the	previous	array	and	assign	them	new	indexes,	then	we
have	to	change	the	second	line	of	the	previous	code	to	this:

$splArray	=	SplFixedArray::fromArray($array,false);	

Now	if	we	print	the	array	again,	we	will	have	the	following	output:

SplFixedArray	Object

(

				[0]	=>	10

				[1]	=>	100

				[2]	=>	1000

				[3]	=>	10000

)	

If	we	want	to	convert	an	array	to	a	fixed	array	during	runtime,	it	is	a	better	idea	to	unset
the	regular	PHP	array	if	it	is	not	being	used	later	on.	It	will	save	memory	usage	if	it	is	a
big	array.

$items	=	5;	
$array	=	new	SplFixedArray($items);	
for	($i	=	0;	$i	<	$items;	$i++)
{	
	$array[$i]	=	$i	*	10;	
}	

$newArray	=	$array->toArray();

print_r($newArray);

Array	
(
	[0]	=>	0	
	[1]	=>	10	
	[2]	=>	20	
	[3]	=>	30	
	[4]	=>
40	
)

$items	=	5;	
$array	=	new	SplFixedArray($items);	
for	($i	=	0;	$i	<	$items;	$i++)
{	
	$array[$i]	=	$i	*	10;	
}	

$array->setSize(10);	
$array[7]	=	100;

$array	=	new	SplFixedArray(100);
for	($i	=	0;	$i	<	100;	$i++)	
$array[$i]	=	new
SplFixedArray(100);

We	are	actually	creating	another	SplFixedArray	inside	each	array	indexes.	We	can	add	as
many	dimensions	as	we	want.	But	we	have	to	remember	that,	with	dimensions,	we	are
multiplying	the	size	of	the	array.	So	it	can	grow	really	big	very	quickly.

Understanding	hash	tables
In	programming	language,	a	hash	table	is	a	data	structure	which	is	used	to	make	an	array	associative.	It
means	we	can	use	keys	to	map	values	instead	of	using	an	index.	A	hash	table	must	use	a	hash	function	to
compute	an	index	into	an	array	of	buckets	or	slots,	from	which	the	desired	value	can	be	found:	

As	we	have	mentioned	several	times,	a	PHP	array	is	actually	a	hash	table	and	hence	it	supports
associative	arrays.	We	need	to	remember	one	thing:	that	we	do	not	need	to	define	a	hash	function	for	the
associative	array	implementation.	PHP	does	it	internally	for	us.	As	a	result,	when	we	create	an
associative	array	in	PHP,	we	are	actually	creating	a	hash	table.	For	example,	the	following	code	can	be
considered	as	the	hash	table:	$array	=	[];	
$array['Germany']	=	"Position	1";	
$array['Argentina']	=	"Position	2";	
$array['Portugal']	=	"Position	6";	
$array['Fifa_World_Cup']	=	"2018	Russia";

As	a	matter	of	fact,	we	can	directly	invoke	any	keys	with	only	O(1)	complexity.	The	key	will	always	refer
to	the	same	index	inside	the	bucket,	as	PHP	will	use	the	same	hash	function	to	calculate	the	index.

Implementing	struct	using	a	PHP	array
As	we	already	know,	a	struct	is	a	complex	data	type	where	we	define	multiple	properties	as	a	group	so
that	we	can	use	it	as	a	single	data	type.	We	can	write	a	struct	using	a	PHP	array	and	class.	Here	is	an
example	of	a	struct	using	a	PHP	array:

$player	=	[

				"name"	=>	"Ronaldo",	

				"country"	=>	"Portugal",	

				"age"	=>	31,	

				"currentTeam"	=>	"Real	Madrid"	

];	

It	is	simply	an	associative	array	with	keys	as	string.	A	complex	struct	can	be	constructed	using	single	or
more	constructs	as	its	properties.	For	example	using	the	player	struct,	we	can	use	a	team	struct:

$ronaldo	=	[

				"name"	=>	"Ronaldo",	

				"country"	=>	"Portugal",	

				"age"	=>	31,	

				"currentTeam"	=>	"Real	Madrid"	

];	

$messi	=	[

				"name"	=>	"Messi",	

				"country"	=>	"Argentina",	

				"age"	=>	27,	

				"currentTeam"	=>	"Barcelona"	

];	

$team	=	[

				"player1"	=>	$ronaldo,	

				"player2"	=>	$messi	

];	

The	same	thing	we	can	achieve	using	PHP	Class.	The	example	will	look	like:		

Class	Player	{	

				public	$name;	

				public	$country;	

				public	$age;	

				public	$currentTeam;	

}	

$ronaldo	=	new	Player;	

$ronaldo->name	=	"Ronaldo";	

$ronaldo->country	=	"Portugal";	

$ronaldo->age	=	31;	

$ronaldo->currentTeam	=	"Real	Madrid";	

Since	we	have	seen	both	ways	of	defining	a	struct,	we	have	to	choose	either	one	of	them	to	implement	a
struct.	While	creating	an	object	might	look	more	convenient,	it	is	slower	compared	to	array
implementation.	Where	an	array	has	an	added	advantage	of	speed,	it	also	has	a	disadvantage	as	it	takes
more	memory	space	compared	to	an	object.	Now	we	have	to	make	the	decision	based	on	our	preference.

Implementing	sets	using	a	PHP	array
A	set	is	a	simply	a	collection	of	values	without	any	particular	order.	It	can	contain	any	data	type	and	we
can	run	different	set	operations	such	as	union,	intersection,	complement,	and	so	on.	As	a	set	only	contains
values,	we	can	construct	a	basic	PHP	array	and	assign	values	to	it	so	that	it	grows	dynamically.	The
following	example	shows	two	sets	that	we	have	defined;	one	contains	some	odd	numbers	and	the	other
one	has	some	prime	numbers:	$odd	=	[];	
$odd[]	=	1;	
$odd[]	=	3;	
$odd[]	=	5;	
$odd[]	=	7;	
$odd[]	=	9;	

$prime	=	[];	
$prime[]	=	2;	
$prime[]	=	3;	
$prime[]	=	5;

In	order	to	check	the	existence	of	a	value	inside	the	set	along	with	union,	intersection,	and	complement
operation,	we	can	use	the	following	example:

if	(in_array(2,	$prime))	{	

				echo	"2	is	a	prime";	

}	

$union	=	array_merge($prime,	$odd);	

$intersection	=	array_intersect($prime,	$odd);	

$compliment	=	array_diff($prime,	$odd);		

PHP	has	many	built-in	functions	for	such	operations	and	we	can	utilize	them	for	our	set	operations.	But
we	have	to	consider	one	fact:	since	the	set	is	not	ordered	in	any	particular	way,	searching	using	the
in_array()	function	might	have	the	complexity	of	O(n)	in	worst	case	scenario.	Same	goes	for	the
array_merge()	function,	as	it	will	check	each	value	from	one	array	with	another	array.	In	order	to	speed
things	up,	we	can	modify	our	code	a	little	bit	and	make	it	efficient:	$odd	=	[];	
$odd[1]	=	true;	
$odd[3]	=	true;	
$odd[5]	=	true;	
$odd[7]	=	true;	
$odd[9]	=	true;	

$prime	=	[];	
$prime[2]	=	true;	
$prime[3]	=	true;	
$prime[5]	=	true;	

if	(isset($prime[2]))	{	
echo	"2	is	a	prime";	

}	

$union	=	$prime	+	$odd;	
$intersection	=	array_intersect_key($prime,	$odd);	
$compliment	=	array_diff_key($prime,	$odd);

If	we	analyze	this	code,	we	can	see	that	we	are	using	an	index	or	key	to	define	the	set.	Since	a	PHP	array
index	or	key	lookup	have	a	complexity	of	O(1),	it	makes	the	searching	much	faster.	As	a	result,	all	the
lookup,	union,	intersect,	and	complement	operations	will	take	lesser	time	compared	to	the	previous
example.

	

Best	usage	of	a	PHP	array
	

Though	a	PHP	array	consumes	more	memory,	the	flexibility	of	using	a	PHP	array	is	much	more	important
for	many	data	structures.	As	a	result,	we	will	use	a	PHP	regular	array	as	well	as	SplFixedArray	in	many	of
our	data	structure	implementations	and	algorithms.	If	we	just	consider	a	PHP	array	as	a	container	for	our
data,	it	will	be	easier	for	us	to	utilize	its	immensely	powerful	features	in	many	data	structure
implementations.	Along	with	built-in	functions,	a	PHP	array	is	definitely	a	must	use	data	structure	for
programming	and	developing	applications	using	PHP.

PHP	has	some	built-in	sorting	functions	for	an	array.	It	can	sort	using	keys	and	values	along	with	keeping
association	while	sorting.	We	are	going	to	explore	these	built-in	functions	in	Chapter	7,	Using	Sorting
Algorithms.

	

	

PHP	array,	is	it	a	performance	killer?
We	have	seen	in	this	chapter	how	each	element	in	a	PHP	array	has	a	very	big	overhead	of	memory.	Since
it	is	done	by	the	language	itself,	there	is	very	little	we	can	do	over	here,	except	that	we	use	SplFixedArray
instead	of	a	regular	array	where	it	is	applicable.	But	if	we	move	from	our	PHP	5.x	version	to	the	new
PHP	7,	then	we	can	have	a	huge	improvement	in	our	application,	whether	we	use	regular	PHP	array	or
SplFixedArray.

In	PHP	7,	the	internal	implementation	of	a	hash	table	has	been	changed	drastically	and	it	is	not	built	for
efficiency.	As	a	result,	the	overhead	memory	consumption	for	each	element	has	gone	down	significantly.
Though	we	can	argue	that	less	memory	consumption	does	not	make	a	code	speedy,	we	can	have	a	counter
argument	that	if	we	have	less	memory	to	manage,	we	can	focus	more	on	execution	rather	than	memory
management.	As	a	result,	we	have	some	impact	on	the	performance.

So	far	from	the	discussion,	we	can	easily	say	the	newly	improved	array	in	PHP	7	is	definitely	a
recommended	choice	for	developers	to	solve	complex	and	memory	efficient	applications.

	

Summary
	

In	this	chapter,	we	have	focused	our	discussion	on	PHP	arrays	and	what	can	be	done	using	a	PHP	array	as
a	data	structure.	We	are	going	to	continue	our	exploration	of	array	features	in	the	coming	chapters.	In	the
next	chapter,	we	are	going	to	focus	on	linked	list	data	structures	and	different	variants	of	linked	list.	We
are	also	going	to	explore	different	types	of	practical	examples	regarding	linked	lists	and	their	best	usages.

	

	

	

Using	Linked	Lists
	

We	know	a	lot	about	arrays	already.	Now,	we	are	going	to	shift	our	focus	to	a	new	type	of	data	structure
known	as	a	list.	It	is	one	of	the	most	used	data	structures	in	the	programming	world.	In	most	of	the
programming	languages,	the	array	is	a	fixed	size	structure.	As	a	result,	it	cannot	grow	dynamically,	and
shrinking	or	removing	an	item	from	a	fixed	size	array	is	also	problematic	since	we	have	to	shift	the
array's	items	to	fill	up	the	gap.	For	this	reason,	many	developers	prefer	lists	instead	of	arrays.
Considering	the	fact	that	each	array	element	can	have	an	overhead	of	some	extra	bytes,	linked	lists	can	be
used	where	memory	efficiency	is	a	big	factor.	In	this	chapter,	we	will	explore	the	different	types	of	linked
lists	in	PHP	and	their	implementation.	We	will	also	look	at	real-world	problems	that	can	be	solved	using
linked	lists.

	

	

What	is	a	linked	list?
A	linked	list	is	a	collection	of	objects	known	as	nodes.	Each	node	is	connected	to	the	next	node	with	a
link,	which	is	nothing	but	an	object	reference.	If	we	consider	the	following	image,	each	box	represents	a
node.	The	arrow	indicates	the	link	between	the	nodes.	This	is	an	example	of	a	singly	linked	list.	The	last
node	contains	the	next	link	of	a	NULL,	so	that	it	marks	the	end	of	the	list:

A	node	is	an	object,	meaning	it	can	store	any	data	type	as	simple	as	a	string,	integer,	or	float,	or	complex,
such	as	an	array,	array	of	arrays,	objects,	or	object	arrays.	We	can	store	anything	as	per	our	need.

We	can	also	perform	a	wide	variety	of	operations	on	a	linked	list,	such	as	the	following	ones:

Checking	whether	the	list	is	empty
Displaying	all	items	in	the	list
Searching	an	item	in	the	list
Getting	the	size	of	the	list
Inserting	a	new	item	at	the	beginning	or	end	of	the	list
Removing	an	item	from	the	beginning	or	end	of	the	list
Inserting	a	new	item	at	a	specific	place	or	before/after	an	item
Reversing	a	list

These	are	only	some	of	the	operations	that	can	be	performed	on	a	linked	list.

Let's	write	a	simple	linked	list	to	store	some	names:

class	ListNode	{	

				public	$data	=	NULL;	

				public	$next	=	NULL;	

				public	function	__construct(string	$data	=	NULL)	{	

								$this->data	=	$data;	

				}	

}

We	mentioned	earlier	that	a	linked	list	consists	of	nodes.	We	have	created	a	simple	class	for	our	node.
The	ListNode	class	has	two	properties:	one	that	will	store	the	data	and	the	other	for	the	link	called	next.
Now,	we	are	going	to	implement	a	linked	list	using	the	ListNode	class.	For	simplicity,	we	will	just	have
two	operations:	insert	and	display:

class	LinkedList	{	

				private	$_firstNode	=	NULL;	

				private	$_totalNodes	=	0;	

				public	function	insert(string	$data	=	NULL)	{	

							$newNode	=	new	ListNode($data);	

								if	($this->_firstNode	===	NULL)	{											

												$this->_firstNode	=	&$newNode;													

								}	else	{	

												$currentNode	=	$this->_firstNode;	

												while	($currentNode->next	!==	NULL)	{	

																$currentNode	=	$currentNode->next;	

												}	

												$currentNode->next	=	$newNode;	

								}	

							$this->_totalNode++;	

								return	TRUE;	

				}	

				public	function	display()	{	

						echo	"Total	book	titles:	".$this->_totalNode."\n";	

								$currentNode	=	$this->_firstNode;	

								while	($currentNode	!==	NULL)	{	

												echo	$currentNode->data	.	"\n";	

												$currentNode	=	$currentNode->next;	

								}	

				}	

}	

The	preceding	code	actually	implements	our	two	basic	operations	for	insert	and	display	nodes.	In	the
LinkedList	class,	we	have	two	private	properties:	$_firstNode	and	$_totalNodes.	Both	have	the	default	value	of
NULL	and	0,	respectively.	We	need	to	mark	the	head	node	or	first	node,	so	that	we	always	know	where	we
have	to	start	from.	We	can	also	call	it	the	front	node.	Whatever	name	we	provide,	it	will	be	mainly	used
to	indicate	the	start	of	the	linked	list.	Now,	let's	move	to	the	insert	operation	code.

The	insert	method	takes	one	argument,	which	is	the	data	itself.	We	will	create	a	new	node	with	the	data
using	the	ListNode	class.	Before	inserting	a	book	title	in	our	linked	list,	we	have	to	consider	two
possibilities:

The	list	is	empty	and	we	are	inserting	the	first	title
The	list	is	not	empty	and	the	title	is	going	to	be	added	at	the	end

Why	do	we	need	to	consider	both	cases?	The	answer	is	pretty	simple.	If	we	do	not	know	whether	the	list
is	empty	or	not,	we	might	get	different	results	for	our	operations.	We	might	also	create	invalid	linking
between	the	nodes.	So,	the	idea	is	if	the	list	is	empty,	our	insert	item	is	going	to	be	the	first	item	of	the	list.
This	is	what	the	first	part	of	the	code	is	doing:

$newNode	=	new	ListNode($data);	

if	($this->_firstNode	===	NULL)	{													

										$this->_firstNode	=	&$newNode;	

}

We	can	see	from	the	preceding	code	segment	that	we	are	creating	a	new	node	with	the	data	and	naming	the
node	object	$newNode.	After	that,	it	checks	whether	$_firstNode	is	NULL	or	not.	If	it	is	NULL,	then	the	list	is	empty.
If	it	is	empty,	then	we	assign	the	$newNode	object	to	the	$_firstNode	property.	Now,	the	remaining	part	of	the
insert	method	represents	our	second	condition,	which	is	that	the	list	is	not	empty,	and	we	have	to	add	the
new	item	at	the	end	of	the	list:

$currentNode	=	$this->_firstNode;				

while	($currentNode->next	!==	NULL)	{	

		$currentNode	=	$currentNode->next;	

}	

$currentNode->next	=	$newNode;	

Here,	we	get	the	first	node	of	the	list	from	the	$_firstNode	property.	Now,	we	are	going	to	iterate	from	the
first	node	until	the	end	of	the	list.	We	will	ensure	this	by	checking	the	condition	that	the	next	link	for	the
current	node	is	not	NULL.	If	it	is	NULL,	then	we	have	reached	the	end	of	the	list.	In	order	to	make	sure	that	we

are	not	looping	to	the	same	node	all	the	time,	we	set	the	next	node	on	from	the	current	node	as	the	current
item	during	the	iteration	process.	The	while	loop	code	implements	the	logic.	Once	we	get	out	of	the	while
loop,	we	set	the	last	node	of	the	linked	list	as	$currentNode.	Now,	we	have	to	assign	the	next	link	of	the
current	last	node	to	the	newly	created	node	named	$newNode,	so	we	simply	put	the	object	to	the	next	link	of
the	node.	This	object	reference	will	work	as	a	link	between	two	node	objects.	At	the	end,	we	also
increment	the	total	node	count	value	by	1	by	post-incrementing	the	$_totalNode	property.

We	could	have	easily	created	another	property	for	the	list	that	would	track	the	last	node.
It	could	have	saved	us	from	looping	the	whole	list	every	time	we	are	inserting	a	new
node.	We	ignored	this	option	intentionally	to	work	through	the	basic	understanding	of	the
linked	list.	Later	in	this	chapter,	we	will	implement	that	for	faster	operations.

If	we	look	at	our	display	method,	we	can	see	that	we	are	using	almost	similar	logic	to	iterate	through	each
of	the	nodes	and	displaying	its	content.	We	first	get	the	head	item	for	the	linked	list.	Then,	we	iterate
through	the	list	until	the	list	item	is	NULL.	Inside	the	loop,	we	display	the	node	data	by	showing	its	$data
property.	Now,	we	have	a	node	class	ListNode	to	create	individual	nodes	for	the	linked	list,	and	we	have
the	LinkedList	class	to	do	basic	insert	and	display	operations.	Let's	write	a	small	code	to	utilize	the	LinkedList
class	to	create	a	linked	list	for	book	titles:

$BookTitles	=	new	LinkedList();	

$BookTitles->insert("Introduction	to	Algorithm");	

$BookTitles->insert("Introduction	to	PHP	and	Data	structures");	

$BookTitles->insert("Programming	Intelligence");	

$BookTitles->display();	

Here,	we	create	a	new	object	for	LinkedList	and	name	it	$BookTitles.	Then,	we	insert	new	book	items	using
the	insert	method.	We	add	three	books,	and	then,	we	are	displaying	the	book	names	using	the	display
method.	If	we	run	the	preceding	code,	we	will	see	following	output:

Total	book	titles:	3

Introduction	to	Algorithm

Introduction	to	PHP	and	Data	structures

Programming	Intelligence

As	we	can	see,	there	is	a	counter	at	the	first	line	that	shows	that	we	have	three	book	titles,	along	with	their
names.	If	we	look	carefully,	we	will	see	that	the	book	titles	are	displayed	the	same	way	that	we	entered
them.	This	means	our	implemented	linked	list	is	actually	maintaining	the	order.	This	is	because	we	have
always	entered	the	new	node	at	the	end	of	the	list.	We	could	have	done	this	differently	if	we	wanted.	As
our	first	example,	we	have	covered	a	lot	about	linked	lists	and	how	to	construct	them.	In	the	upcoming
sections,	we	will	explore	more	about	how	to	create	different	types	of	linked	lists,	and	with	more	complex
examples.	For	now,	we	are	going	to	focus	on	the	different	types	of	linked	lists.

Different	types	of	linked	list
So	far,	we	have	dealt	with	the	kind	of	list	known	as	a	singly	linked	list,	or	linear	linked	list.	However,
there	are	also	several	different	types	of	linked	lists	based	on	the	operations	involved:

Doubly	linked	list
Circular	linked	list
Multi-linked	list

	

Doubly	linked	lists
	

In	a	doubly	linked	list,	there	are	two	links	on	each	node:	one	to	point	to	the	next	node	and	another	one	to
the	previous	node.	Where	the	singly	linked	list	is	unidirectional,	the	doubly	linked	list	is	bidirectional.
We	can	move	forward	or	backward	in	the	list	without	any	problem.	The	following	image	shows	a	sample
doubly	linked	list.	Later,	in	the	Implementing	a	doubly	linked	list	in	PHP	section,	we	will	explore	how
to	implement	a	doubly	linked	list:	

	

	

	

Circular	linked	lists
	

In	a	singly	or	doubly	linked	list,	there	is	no	node	after	the	last	node,	so	the	last	node	does	not	have	any
subsequent	node	to	iterate	on.	If	we	allow	the	last	node	to	point	to	the	first	node,	we	are	making	a	circle.
Such	linked	lists	are	known	as	circular	linked	lists.	We	can	have	both	singly	and	doubly	linked	lists	as
circular	linked	lists.	We	will	also	implement	a	circular	linked	list	in	this	chapter.	The	following	image

depicts	a	circular	linked	list:	

	

	

	

Multi-linked	lists
	

A	multi-linked	list,	or	multiply	linked	list,	is	a	special	type	of	linked	list	that	has	two	or	more	links	linking
each	node	to	another	node.	It	can	grow	multi-directionally	based	on	the	purpose	of	the	linked	list.	For
example,	if	we	take	the	example	of	a	list	of	students	with	each	student	being	a	node	with	the	properties	of
name,	age,	gender,	department,	major,	and	so	on,	then	we	can	link	each	student's	node	not	only	with	the
next	and	previous	nodes,	but	also	with	age,	gender,	department,	and	major.	Though	the	usage	of	such	a
linked	list	requires	a	good	understanding	of	the	linked	list	concept,	we	can	use	such	special	linked	lists
whenever	we	need.	The	following	image	depicts	a	multi-linked	list:	

	

	

	

Inserting,	deleting,	and	searching	for	an	item
	

So	far,	we	have	seen	only	the	operations	for	inserting	a	node	and	displaying	all	node	contents.	Now,	we
will	explore	the	other	operations	available	in	a	linked	list.	We	will	mainly	focus	on	the	following
operations:

Inserting	at	the	first	node
Searching	for	a	node
Inserting	before	a	specific	node
Inserting	after	a	specific	node
Deleting	the	first	node
Deleting	the	last	node
Searching	for	and	deleting	one	node
Reversing	a	linked	list
Getting	Nth	position	element

	

public	function	insertAtFirst(string	$data	=	NULL)	{	
	$newNode	=	new
ListNode($data);	
	if	($this->_firstNode	===	NULL)	{	
	$this->_firstNode	=
&$newNode;	
	}	else	{	
	$currentFirstNode	=	$this->_firstNode;	
	$this-
>_firstNode	=	&$newNode;	
	$newNode->next	=	$currentFirstNode;	
	}	

$this->_totalNode++;	
	return	TRUE;	
	}

public	function	search(string	$data	=	NULL)	{	
	if	($this->_totalNode)	{	

$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)	{	
	if
($currentNode->data	===	$data)	{	
	return	$currentNode;	
	}	

$currentNode	=	$currentNode->next;	
	}	
	}	
	return	FALSE;	
	}

Inserting	before	a	specific	node
This	process	is	similar	to	the	first	operation	that	we	looked	at.	The	main	difference	is	that	we	need	to	find
out	the	specific	node	and	then	insert	a	new	node	before	it.	When	we	find	the	target	node,	we	can	change
the	next	node	so	that	it	points	to	the	newly	created	node,	and	then	we	can	change	the	node	following	the
newly	created	node	so	that	it	points	to	the	node	that	we	searched	for.	This	is	shown	in	the	following
image:

Here	is	the	code	to	implement	the	logic	shown	earlier:

public	function	insertBefore(string	$data	=	NULL,	string	$query	=	NULL)	{	

								$newNode	=	new	ListNode($data);	

								if	($this->_firstNode)	{	

												$previous	=	NULL;	

												$currentNode	=	$this->_firstNode;	

												while	($currentNode	!==	NULL)	{	

																if	($currentNode->data	===	$query)	{	

																				$newNode->next	=	$currentNode;	

																				$previous->next	=	$newNode;	

																				$this->_totalNode++;	

																				break;	

																}	

																$previous	=	$currentNode;	

																$currentNode	=	$currentNode->next;	

												}	

								}	

				}	

If	we	inspect	the	preceding	code,	we	can	see	that	the	logic	is	pretty	straightforward.	We	have	two
parameters	in	this	method:	one	is	the	data	and	one	is	the	query.	We	iterate	through	each	node.	While	doing
this,	we	also	track	the	current	node	and	previous	node.	It	is	important	to	track	the	previous	node	as	we
will	set	the	next	of	previous	node	to	a	newly	created	node	when	our	target	node	is	found.

public	function	insertAfter(string	$data	=	NULL,	string	$query	=	
	NULL)	{	

$newNode	=	new	ListNode($data);	

	if	($this->_firstNode)	{	
	$nextNode
=	NULL;	
	$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)
{	
	if	($currentNode->data	===	$query)	{	
	if($nextNode	!==	NULL)	{	

$newNode->next	=	$nextNode;	
	}	
	$currentNode->next	=	$newNode;	

$this->_totalNode++;	
	break;	
	}	
	$currentNode	=	$currentNode->next;

	$nextNode	=	$currentNode->next;	
	}	
	}	
	}

Deleting	the	first	node
Deleting	a	node	simply	means	taking	out	the	node	and	rearranging	the	previous	and	subsequent	node	links.
If	we	just	remove	a	node	and	connect	the	previous	node's	next	link	with	the	node	following	the	deleted
node,	we	are	done	with	the	delete	operation.	Just	have	a	look	at	the	following	example:

When	we	delete	the	first	node,	we	just	have	to	make	the	second	node	our	head	or	first	node.	We	can
achieve	that	very	easily	by	using	the	following	code:

public	function	deleteFirst()	{	

								if	($this->_firstNode	!==	NULL)	{	

												if	($this->_firstNode->next	!==	NULL)	{	

																$this->_firstNode	=	$this->_firstNode->next;	

												}	else	{	

																$this->_firstNode	=	NULL;	

												}	

												$this->_totalNode--;	

												return	TRUE;	

								}	

								return	FALSE;	

				}	

Now,	we	have	to	consider	one	special	case,	namely	decreasing	the	total	node	count	by	one.

public	function	deleteLast()	{	
	if	($this->_firstNode	!==	NULL)	{	

$currentNode	=	$this->_firstNode;	
	if	($currentNode->next	===	NULL)	{	

$this->_firstNode	=	NULL;	
	}	else	{	
	$previousNode	=	NULL;	

while	($currentNode->next	!==	NULL)	{	
	$previousNode	=	$currentNode;	

$currentNode	=	$currentNode->next;	
	}	

	$previousNode->next	=	NULL;

	$this->_totalNode--;	
	return	TRUE;	
	}	
	}	
	return	FALSE;

	}

At	first,	we	check	whether	the	list	is	empty	or	not.	After	that,	we	check	whether	the	list
has	more	than	one	node.	Based	on	the	answer,	we	iterate	to	the	the	last	node	and	tracking
the	previous	node.	Then,	we	assign	the	previous	node's	next	link	as	NULL,	just	to	omit	the
very	last	node	from	the	list.

public	function	delete(string	$query	=	NULL)	{	
	if	($this->_firstNode)	{	

$previous	=	NULL;	
	$currentNode	=	$this->_firstNode;	
	while	($currentNode
!==	NULL)	{	
	if	($currentNode->data	===	$query)	{	
	if	($currentNode->next
===	NULL)	{	
	$previous->next	=	NULL;	
	}	else	{	
	$previous->next	=
$currentNode->next;	
	}	

	$this->_totalNode--;	
	break;	
	}	

$previous	=	$currentNode;	
	$currentNode	=	$currentNode->next;	
	}	
	}

	}

prev	=	NULL;	
current	=	first_node;	
next	=	NULL;	
while	(current	!=
NULL)	
{	
	next	=	current->next;	
	current->next	=	prev;	
	prev	=
current;	
	current	=	next;	
}	
first_node	=	prev;

public	function	reverse()	{	
	if	($this->_firstNode	!==	NULL)	{	
	if	($this-
>_firstNode->next	!==	NULL)	{	
	$reversedList	=	NULL;	
	$next	=	NULL;	

$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)	{	
	$next
=	$currentNode->next;	
	$currentNode->next	=	$reversedList;	
	$reversedList	=
$currentNode;	
	$currentNode	=	$next;	
	}	
	$this->_firstNode	=
$reversedList;	
	}	
	}	
	}

Getting	the	Nth	position	element
As	lists	are	different	from	arrays,	it	is	not	easier	to	get	elements	from	their	positions	directly.	In	order	to
get	an	element	in	the	Nth	position,	we	have	to	iterate	to	that	position	and	get	the	element.	Here	is	the	code
sample	for	this	method:

public	function	getNthNode(int	$n	=	0)	{	

								$count	=	1;	

								if	($this->_firstNode	!==	NULL)	{	

												$currentNode	=	$this->_firstNode;	

												while	($currentNode	!==	NULL)	{	

																if	($count	===	$n)	{	

																				return	$currentNode;	

																}	

																$count++;	

																$currentNode	=	$currentNode->next;	

												}	

								}	

				}	

We	have	now	written	all	the	required	operations	for	our	LinkedList	class.	Now,	let's	run	the	program	with
different	operations.	If	we	run	the	following	program,	we	will	mostly	cover	all	the	operations	we	have
written:

$BookTitles	=	new	LinkedList();	

$BookTitles->insert("Introduction	to	Algorithm");	

$BookTitles->insert("Introduction	to	PHP	and	Data	structures");	

$BookTitles->insert("Programming	Intelligence");	

$BookTitles->insertAtFirst("Mediawiki	Administrative	tutorial	guide");	

$BookTitles->insertBefore("Introduction	to	Calculus",	"Programming	Intelligence");	

$BookTitles->insertAfter("Introduction	to	Calculus",	"Programming	Intelligence");	

$BookTitles->display();	

$BookTitles->deleteFirst();	

$BookTitles->deleteLast();	

$BookTitles->delete("Introduction	to	PHP	and	Data	structures");	

$BookTitles->reverse();	

$BookTitles->display();	

echo	"2nd	Item	is:	".$BookTitles->getNthNode(2)->data;	

The	output	of	the	preceding	code	will	look	like	this:

Total	book	titles:	6

Mediawiki	Administrative	tutorial	guide

Introduction	to	Algorithm

Introduction	to	PHP	and	Data	structures

Introduction	to	Calculus

Programming	Intelligence

Introduction	to	Calculus

Total	book	titles:	3

Programming	Intelligence

Introduction	to	Calculus

Introduction	to	Algorithm

2nd	Item	is:	Introduction	to	Calculus

Now	we	have	a	complete	implementation	of	a	linked	list	using	PHP	7.	One	thing	we	have	understood	so
far	is	that	unlike	the	implementation	of	arrays,	we	have	to	do	lots	of	operations	manually	by	writing
codes.	We	also	have	to	remember	one	thing:	This	is	not	the	only	way	we	can	implement	a	linked	list.
Many	prefer	to	track	both	the	first	and	last	nodes	of	the	list	for	a	better	insert	operation.	Now,	we	will
look	at	the	complexity	of	linked	list	operations	in	average	and	worst-case	scenarios.

Understanding	complexity	for	linked	lists
Here	is	the	best,	worst,	and	average-case	complexity	for	linked	list	operations:

Operation Time	Complexity:	Worst	Case Time	Complexity:	Average	Case

Insert	at	beginning	or	end O(1) O(1)

Delete	at	beginning	or	end O(1) O(1)

Search O(n) O(n)

Access O(n) O(n)

We	can	achieve	the	O(1)	insert	complexity	at	the	end	of	the	linked	list	by	keeping	a	track	of	the	last	node,
as	we	did	for	the	first	node	in	our	examples.	This	will	help	us	jump	directly	to	the	last	node	of	the	linked
list	without	any	iteration.

Making	the	linked	list	iterable
So	far,	we	have	seen	that	we	can	traverse	each	node	of	the	linked	list	using	a	while	loop	inside	the
methods.	What	if	we	need	to	iterate	from	outside	using	just	the	linked	list	object?	It	is	very	much	possible
to	achieve	this.	PHP	has	a	very	intuitive	iterator	interface	that	allows	any	external	iterators	to	iterate
through	an	object	internally.	The	Iterator	interface	provides	the	following	methods:

Current:	Return	the	current	element
Next:	Move	forward	to	the	next	element
Key:	Return	the	key	of	the	current	element
Rewind:	Rewind	the	Iterator	to	the	first	element
Valid:	Checks	whether	the	current	position	is	valid

We	will	now	implement	these	methods	in	our	LinkedList	class	to	make	our	object	iterate	through	the	nodes
from	the	object	directly.	In	order	to	track	the	current	node	and	the	current	position	within	the	list	during
iteration,	we	will	require	two	new	properties	for	our	LinkedList	class:

private	$_currentNode	=	NULL;	

private	$_currentPosition	=	0;	

The	$_currentNode	property	will	track	the	current	node	during	the	iteration,	and	$_currentPosition	will	track
the	current	position	during	the	iteration.	We	also	need	to	make	sure	that	our	class	LinkedList	class	is	also
implementing	the	Iterator	interface.	It	will	look	like	this:

class	LinkedList	implements	Iterator{	

}	

Now,	let's	implement	those	five	new	methods	to	make	our	linked	list	object	iterable.	These	five	methods
are	very	straightforward	and	simple	to	implement.	Here	is	the	code	for	that:

public	function	current()	{	

								return	$this->_currentNode->data;	

				}	

				public	function	next()	{	

								$this->_currentPosition++;	

								$this->_currentNode	=	$this->_currentNode->next;	

				}	

				public	function	key()	{	

								return	$this->_currentPosition;	

				}	

				public	function	rewind()	{	

								$this->_currentPosition	=	0;	

								$this->_currentNode	=	$this->_firstNode;	

				}	

				public	function	valid()	{	

								return	$this->_currentNode	!==	NULL;	

				}	

Now,	we	have	a	list	that	is	iterable.	This	means	that	now	we	can	iterate	through	our	linked	list	object
using	the	foreach	loop	or	any	other	iteration	process	we	wish	to	follow.	So,	now,	if	we	write	the	following
code,	we	will	see	all	the	book	titles:

foreach	($BookTitles	as	$title)	{	

				echo	$title	.	"\n";	

}

Another	approach	can	be	using	the	rewind,	valid,	next,	and	current	methods	from	the	iterable	interface.	It	will
have	the	same	output	as	the	preceding	code:

for	($BookTitles->rewind();	$BookTitles->valid();	

		$BookTitles->next())	{	

				echo	$BookTitles->current()	.	"\n";	

}

Building	circular	linked	list
Building	a	circular	linked	list	is	not	at	as	hard	as	it	sounds	from	the	name.	So	far,	we	have	seen	that
adding	a	new	node	at	the	end	is	pretty	simple;	we	set	the	next	reference	of	the	last	node	to	NULL.	In	a
circular	linked	list,	the	last	node's	next	reference	will	actually	point	to	the	first	node,	thereby	creating	a
circular	list.	Let's	write	a	simple	circular	linked	list	where	the	nodes	will	be	inserted	at	the	end	of	the
list:	class	CircularLinkedList	{	

private	$_firstNode	=	NULL;	
private	$_totalNode	=	0;	

public	function	insertAtEnd(string	$data	=	NULL)	{	
$newNode	=	new	ListNode($data);	
if	($this->_firstNode	===	NULL)	{	
$this->_firstNode	=	&$newNode;	
}	else	{	
$currentNode	=	$this->_firstNode;	
while	($currentNode->next	!==	$this->_firstNode)	{	
$currentNode	=	$currentNode->next;	
}	
$currentNode->next	=	$newNode;	
}	
$newNode->next	=	$this->_firstNode;	
$this->_totalNode++;	
return	TRUE;	
}	
}

If	we	look	closely	look	at	the	preceding	code,	it	looks	exactly	like	our	singly	linked	list	implementation.
The	only	difference	is	that	we	do	not	check	the	end	of	the	list,	rather	than	making	sure	the	current	node	is
not	the	same	as	the	first	node.	Also,	in	the	following	line,	we	assign	the	next	reference	of	the	newly
created	node	to	the	first	node	of	the	list:

$newNode->next	=	$this->_firstNode;	

As	we	are	implementing	this,	the	new	nodes	are	added	to	the	back	of	the	list.	All	we	need	to	do	is	set	the
new	node's	next	reference	to	our	first	node	in	the	list.	By	doing	so,	we	have	actually	created	a	circular
linked	list.	We	have	to	make	sure	that	we	do	not	run-	in	an	infinite	loop.	That	is	why	we	are	comparing
$currentNode->next	to	$this->_firstNode.	The	same	principle	will	apply	when	we	are	displaying	all	elements	in
the	circular	linked	list.	We	need	to	ensure	that	we	do	not	fall	in	an	infinite	loop	while	displaying	the	titles.
Here	is	the	code	that	will	display	all	titles	from	a	circular	linked	list:	public	function	display()	{	
echo	"Total	book	titles:	"	.	$this->_totalNode	.	"\n";	
$currentNode	=	$this->_firstNode;	
while	($currentNode->next	!==	$this->_firstNode)	{	
echo	$currentNode->data	.	"\n";	

$currentNode	=	$currentNode->next;	
}	

if	($currentNode)	{	
echo	$currentNode->data	.	"\n";	
}	
}

So	far,	we	have	built	a	singly	linked	list	and	implemented	a	circular	linked	list.	Now,	we	will	implement
a	doubly	linked	list	with	PHP.

Implementing	a	doubly	linked	list	in	PHP
We	already	know	from	the	definition	of	a	doubly	linked	list	that	a	doubly	linked	list	node	will	have	two
links:	one	to	point	to	the	next	node	and	another	to	point	to	the	previous	node.	Also,	when	we	add	a	new
node	or	delete	a	new	node,	we	need	to	set	both	the	next	and	previous	references	for	each	affected	nodes.
We	saw	a	different	approach	in	the	singly	linked	list	implementation	where	we	did	not	track	the	last	node,
and	as	a	result,	we	had	to	use	an	iterator	to	reach	the	last	node	each	time.	This	time,	we	will	track	the	last
node,	along	with	our	insert	and	delete	operations,	to	make	sure	our	insert,	and	delete,	and	end	operations
have	O(1)	complexity.

Here	is	how	the	new	node	class	will	look	with	two	link	pointers	followed	by	our	barebones	structure	of	a
doubly	linked	list	class:

class	ListNode	{

				public	$data	=	NULL;	

				public	$next	=	NULL;	

				public	$prev	=	NULL;	

				public	function	__construct(string	$data	=	NULL)	{

								$this->data	=	$data;

				}

}

class	DoublyLinkedList	{

				private	$_firstNode	=	NULL;

				private	$_lastNode	=	NULL;

				private	$_totalNode	=	0;

}

In	the	next	section,	we	will	explore	the	different	operations	of	a	doubly	linked	list	so	that	we	understand
the	basic	difference	between	a	singly	linked	list	and	a	doubly	linked	list.

	

Doubly	linked	list	operations
	

We	will	explore	the	following	operations	in	our	doubly	linked	list	implementation.	Though	they	sound
similar	to	those	used	in	singly	linked	lists,	they	have	a	major	difference	in	their	implementations:

Inserting	at	the	first	node
Inserting	at	the	last	node
Inserting	before	a	specific	node
Inserting	after	a	specific	node
Deleting	the	first	node
Deleting	the	last	node
Searching	for	and	deleting	one	node
Displaying	the	list	forward
Displaying	the	list	backward

	

public	function	insertAtFirst(string	$data	=	NULL)	{
	$newNode	=	new
ListNode($data);
	if	($this->_firstNode	===	NULL)	{
	$this->_firstNode	=
&$newNode;
	$this->_lastNode	=	$newNode;	
	}	else	{
	$currentFirstNode
=	$this->_firstNode;	
	$this->_firstNode	=	&$newNode;	
	$newNode->next	=
$currentFirstNode;	
	$currentFirstNode->prev	=	$newNode;	
	}
	$this-
>_totalNode++;	
	return	TRUE;
	}

public	function	insertAtLast(string	$data	=	NULL)	{	
	$newNode	=	new
ListNode($data);
	if	($this->_firstNode	===	NULL)	{
	$this->_firstNode	=
&$newNode;	
	$this->_lastNode	=	$newNode;	
	}	else	{
	$currentNode	=
$this->_lastNode;	
	$currentNode->next	=	$newNode;	
	$newNode->prev	=
$currentNode;	
	$this->_lastNode	=	$newNode;	
	}
	$this->_totalNode++;

	return	TRUE;
	}

public	function	insertBefore(string	$data	=	NULL,	string	$query	=	
	NULL)	{

$newNode	=	new	ListNode($data);	

	if	($this->_firstNode)	{	
	$previous	=
NULL;	
	$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)	{

	if	($currentNode->data	===	$query)	{	
	$newNode->next	=	$currentNode;

	$currentNode->prev	=	$newNode;	
	$previous->next	=	$newNode;	

$newNode->prev	=	$previous;	
	$this->_totalNode++;	
	break;	
	}

$previous	=	$currentNode;	
	$currentNode	=	$currentNode->next;	
	}
	}

	}

public	function	insertAfter(string	$data	=	NULL,	string	$query	=	
	NULL)	{	

$newNode	=	new	ListNode($data);

	if	($this->_firstNode)	{	
	$nextNode	=
NULL;	
	$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)	{

	if	($currentNode->data	===	$query)	{	
	if	($nextNode	!==	NULL)	{	

$newNode->next	=	$nextNode;	
	}	
	if	($currentNode	===	$this->_lastNode)	{

	$this->_lastNode	=	$newNode;	
	}	
	$currentNode->next	=	$newNode;

	$nextNode->prev	=	$newNode;	
	$newNode->prev	=	$currentNode;	

$this->_totalNode++;	
	break;	
	}	
	$currentNode	=	$currentNode->next;

	$nextNode	=	$currentNode->next;	
	}
	}
	}

public	function	deleteFirst()	{	
	if	($this->_firstNode	!==	NULL)	{	
	if	($this-
>_firstNode->next	!==	NULL)	{	
	$this->_firstNode	=	$this->_firstNode->next;

	$this->_firstNode->prev	=	NULL;	
	}	else	{	
	$this->_firstNode	=	NULL;

	}	
	$this->_totalNode--;	
	return	TRUE;	
	}	
	return	FALSE;

	}

public	function	deleteLast()	{	
	if	($this->_lastNode	!==	NULL)	{	

$currentNode	=	$this->_lastNode;	
	if	($currentNode->prev	===	NULL)	{	

$this->_firstNode	=	NULL;	
	$this->_lastNode	=	NULL;	
	}	else	{	

$previousNode	=	$currentNode->prev;	
	$this->_lastNode	=	$previousNode;	

$previousNode->next	=	NULL;	
	$this->_totalNode--;	
	return	TRUE;	
	}

	}	
	return	FALSE;	
	}

public	function	delete(string	$query	=	NULL)	{	
	if	($this->_firstNode)	{	

$previous	=	NULL;
	$currentNode	=	$this->_firstNode;	
	while	($currentNode
!==	NULL)	{	
	if	($currentNode->data	===	$query)	{	
	if	($currentNode->next
===	NULL)	{	
	$previous->next	=	NULL;	
	}	else	{	
	$previous->next	=
$currentNode->next;	
	$currentNode->next->prev	=	$previous;	
	}

$this->_totalNode--;	
	break;	
	}
	$previous	=	$currentNode;	

$currentNode	=	$currentNode->next;	
	}
	}
	}

public	function	displayForward()	{	
	echo	"Total	book	titles:	"	.	$this->_totalNode	.
"\n";	
	$currentNode	=	$this->_firstNode;	
	while	($currentNode	!==	NULL)	{

	echo	$currentNode->data	.	"\n";	
	$currentNode	=	$currentNode->next;	
	}

	}

public	function	displayBackward()	{	
	echo	"Total	book	titles:	"	.	$this->_totalNode	.
"\n";	
	$currentNode	=	$this->_lastNode;	
	while	($currentNode	!==	NULL)	{

	echo	$currentNode->data	.	"\n";	
	$currentNode	=	$currentNode->prev;	

}
	}

Complexity	for	doubly	linked	lists
Here	is	the	best,	worst,	and	average-case	complexity	for	doubly	linked	list	operations.	It	is	similar	to	that
of	singly	linked	list	operations:

Operation Time	Complexity:	Worst	Case Time	Complexity:	Average	Case

Insert	at	beginning	or	end O(1) O(1)

Delete	at	beginning	or	end O(1) O(1)

Search O(n) O(n)

Access O(n) O(n)

Using	PHP	SplDoublyLinkedList
The	PHP	Standard	PHP	Library	(SPL)	has	an	implementation	of	a	doubly	linked	list,	which	is	known	as
SplDoublyLinkedList.	If	we	are	using	the	built-in	class,	we	do	not	need	to	implement	the	doubly	linked	list
ourselves.	The	doubly	linked	list	implementation	actually	works	as	a	stack	and	queue	as	well.	The	PHP
implementation	of	the	doubly	linked	list	has	lots	of	additional	functionalities.	Here	are	some	of	the
common	features	of	SplDoublyLinkedList:

Method Description

Add Adds	a	new	node	in	a	specified	index

Bottom Peeks	a	node	from	beginning	of	the	list

Count Returns	the	size	of	the	list

Current Returns	the	current	node

getIteratorMode Returns	the	mode	of	iteration

setIteratorMode Sets	the	mode	of	iteration.	For	example,	LIFO,	FIFO,	and	so	on

Key Returns	the	current	node	index

next Moves	to	the	next	node

pop Pops	a	node	from	the	end	of	the	list

prev Moves	to	the	previous	node

push Adds	a	new	node	at	the	end	of	the	list

rewind Rewinds	the	iterator	back	to	the	top

shift Shifts	a	node	from	the	beginning	of	the	linked	list

top Peeks	a	node	from	the	end	of	the	list

unshift Prepends	an	element	in	the	list

valid Checks	whether	there	are	any	more	nodes	in	the	list

Now,	let's	write	a	small	program	using	SplDoublyLinkedList	for	our	book	titles	applications:	$BookTitles	=
new	SplDoublyLinkedList();	

$BookTitles->push("Introduction	to	Algorithm");
$BookTitles->push("Introduction	to	PHP	and	Data	structures");	
$BookTitles->push("Programming	Intelligence");
$BookTitles->push("Mediawiki	Administrative	tutorial	guide");	
$BookTitles->add(1,"Introduction	to	Calculus");
$BookTitles->add(3,"Introduction	to	Graph	Theory");

for($BookTitles->rewind();$BookTitles->valid();$BookTitles->next()){	
echo	$BookTitles->current()."\n";
}

The	preceding	code	will	have	the	following	output:	Introduction	to	Algorithm
Introduction	to	Calculus
Introduction	to	PHP	and	Data	structures
Introduction	to	Graph	Theory
Programming	Intelligence
Mediawiki	Administrative	tutorial	guide

	

Summary
	

The	linked	list	is	one	of	the	most	popular	data	structures	that	are	used	to	solve	different	problems.
Whether	it's	regarding	for	a	stack,	queue,	priority	queue,	or	for	implementing	complex	graph	algorithms,
the	linked	list	is	a	very	handy	data	structure	to	solve	any	problems	you	might	find.	In	this	chapter,	we
explored	all	possible	details	regarding	the	singly	linked	list,	doubly	linked	list,	and	circular	linked	list,
along	with	their	complexity	analysis.	In	the	upcoming	chapters,	we	will	utilize	linked	lists	to	implement
different	data	structures	and	writing	algorithms.

	

	

	

Constructing	Stacks	and	Queues
	

In	everyday	life,	we	use	two	of	the	most	common	data	structures.	We	can	assume	that	these	data	structures
are	inspired	by	the	real-world,	but	they	have	very	important	effects	in	the	computing	world.	We	are
talking	about	stack	and	queue	data	structures.	We	stack	our	books,	files,	plates,	and	clothes	on	a	daily
basis,	whereas	we	maintain	queues	for	ticket	counters,	bus	stops,	and	shopping	checkouts.	Also,	we	have
heard	about	message	queue	in	PHP,	one	of	the	most	used	features	in	high-end	applications.	In	this	chapter,
we	are	going	to	explore	the	different	implementations	of	popular	stack	and	queue	data	structures.	We	are
going	to	learn	about	queues,	priority	queues,	circular	queues,	and	double-ended	queues	in	PHP.

	

	

Understanding	stack
The	stack	is	a	linear	data	structure	that	follows	the	Last-In,	First-Out	(LIFO)	principle.	This	means	that
there	is	only	one	end	for	the	stack,	which	is	used	to	add	items	and	remove	items	from	the	structure.	The
addition	of	new	items	in	the	stack	is	known	as	push,	and	push	whilst	removing	an	item	is	known	as	pop.
Since	we	only	have	one	end	to	operate,	we	are	always	going	to	push	an	item	at	that	end,	and	when	we
pop,	the	last	item	from	that	end	will	be	popped	up.	The	top	most	elements	in	the	stack	that	are	also	at	the
very	beginning	of	the	stack	end	are	known	as	the	top.	If	we	consider	the	following	image,	we	can	see	that
after	each	pop	and	push	operation,	the	top	changes.	Also,	we	are	performing	the	operation	at	the	top	of	the
stack,	not	at	the	beginning	or	middle	of	the	stack.	We	have	to	be	careful	about	popping	an	element	when
the	stack	is	empty,	as	well	as	pushing	an	element	when	the	stack	is	full.	We	might	have	a	stack	overflow	if
we	want	to	push	more	elements	than	its	capacity.

From	our	earlier	discussion,	we	now	know	that	we	have	four	basic	operations	in	a	stack:

Push:	add	an	item	at	the	top	of	the	stack.
Pop:	remove	the	top	item	of	the	stack.
Top:	returns	the	top	item	of	the	stack.	It	is	not	the	same	as	pop,	as	it	does	not	remove	the	item,	it	just
gets	the	value	for	us.
isEmpty:	checks	whether	the	stack	is	empty	or	not.

Now	let	us	implement	the	stack	using	PHP,	but	in	different	ways.	First,	we	will	try	to	implement	the	stack
using	PHP's	built-in	array	function.	Then	we	will	look	at	how	to	build	a	stack	without	using	PHP's	built-in
functions,	but	by	using	some	other	data	structures,	such	as	linked	lists.

Implementing	a	stack	using	PHP	array
First,	we	will	create	an	interface	for	the	stack	so	that	we	can	use	it	in	different	implementations,	and	can
ensure	that	all	implementations	have	some	similarity	to	each	other.	Let	us	write	the	simple	interface	for
the	stack:

interface	Stack	{	

				public	function	push(string	$item);	

				public	function	pop();	

				public	function	top();	

				public	function	isEmpty();	

}

As	we	can	see	from	the	preceding	interface,	we	kept	all	stack	functions	inside	the	interface	because	the
class	that	it	is	implementing	must	have	all	these	mentioned	functions,	otherwise,	else	a	fatal	error	will	be
thrown	during	runtime.	Since	we	are	implementing	the	stack	using	a	PHP	array,	we	are	going	to	use	some
existing	PHP	functions	for	push,	pop,	and	top	operations.	We	are	going	to	implement	the	stack	in	such	a
way	that	we	can	define	the	size	of	the	stack.	If	there	is	no	item	in	the	array	and	we	still	want	to	pop,	it	will
throw	an	underflow	exception,	and	if	we	try	to	push	more	items	than	its	capacity	allows,	then	an	overflow
exception	will	be	thrown.	Here	is	the	code	for	a	stack	implementation	using	an	array:

class	Books	implements	Stack	{	

				private	$limit;	

				private	$stack;	

				public	function	__construct(int	$limit	=	20)	{	

						$this->limit	=	$limit;	

						$this->stack	=	[];	

				}	

				public	function	pop():	string	{	

						if	($this->isEmpty())	{	

										throw	new	UnderflowException('Stack	is	empty');	

						}	else	{	

										return	array_pop($this->stack);	

						}	

				}	

				public	function	push(string	$newItem)	{	

						if	(count($this->stack)	<	$this->limit)	{	

										array_push($this->stack,	$newItem);	

						}	else	{	

										throw	new	OverflowException('Stack	is	full');	

						}	

				}	

				public	function	top():	string	{	

						return	end($this->stack);	

				}	

				public	function	isEmpty():	bool	{	

						return	empty($this->stack);	

				}	

}

Now	let	us	go	through	the	code	we	have	written	for	the	stack.	We	named	the	stack	implementation	Books,

but	we	can	name	it	anything	we	want	as	long	as	it's	a	valid	class	name.	First,	we	construct	the	stack	using
the	__construct()	method	with	an	option	to	limit	the	number	of	items	we	can	store	in	the	stack.	The	default
value	is	set	at	20.	The	next	method	defines	the	pop	operation:

public	function	pop():		string	{	

		if	($this->isEmpty())	{

						throw	new	UnderflowException('Stack	is	empty');

		}	else	{

						return	array_pop($this->stack);

		}

	}

The	pop	method	will	return	a	string	if	the	stack	is	not	empty.	We	use	the	empty	method	we	defined	in	the
stack	class	for	this	purpose.	If	the	stack	is	empty,	we	throw	an	UnderFlowException	from	SPL.	If	there	is	no
item	to	pop,	we	can	prevent	that	operation	from	taking	place.	If	the	stack	is	not	empty,	we	use	the	array_pop
function	from	PHP	to	return	the	last	item	from	the	array.

In	the	push	method,	we	do	the	opposite	of	pop.	First,	we	check	whether	or	not	the	stack	is	full.	If	it	is	not,
we	add	the	string	item	at	the	end	of	the	stack	using	the	array_push	function	of	PHP.	If	the	stack	is	full,	we
throw	an	OverFlowException	from	SPL.	The	top	method	returns	the	top	most	element	of	the	stack.	The	isEmpty
method	checks	whether	or	not	the	stack	is	empty.

Since	we	are	following	PHP	7,	we	are	using	both	scalar	type	declarations	at	method	level
and	return	types	for	methods.

In	order	to	use	our	just	implemented	stack	class,	we	have	to	think	of	an	example	where	we	can	use	all
these	operations.	Let	us	write	a	small	program	to	make	a	book	stack.	Here	is	the	code	for	this:

try	{	

				$programmingBooks	=	new	Books(10);	

				$programmingBooks->push("Introduction	to	PHP7");	

				$programmingBooks->push("Mastering	JavaScript");	

				$programmingBooks->push("MySQL	Workbench	tutorial");	

				echo	$programmingBooks->pop()."\n";	

				echo	$programmingBooks->top()."\n";	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

We	have	created	an	instance	for	our	book	stack,	and	for	keeping	our	programming	book	titles	in	it.	We
have	three	push	operations.	The	last	inserted	book	name	is	"MySQL	workbench	tutorial".	If	we	pop	after	three
push	operations,	we	will	have	this	title	name	as	the	return.	After	that,	the	top	will	return	"Mastering
JavaScript",	which	will	become	the	top	item	once	the	pop	operation	has	been	performed.	We	are	nesting	the
whole	code	in	a	try...catch	block	so	that	we	can	handle	the	exception	thrown	by	the	overflow	and
underflow.	The	preceding	code	will	have	the	following	output:

MySQL	Workbench	tutorial

Mastering	JavaScript

Now	let	us	focus	on	the	complexities	of	the	different	stack	operations	we	have	just	completed.

Understanding	complexity	of	stack	operations
Here	is	the	time	complexity	of	different	stack	operations.	For	the	worst	case,	the	time	complexities	for
stack	operations	are	as	follows:

Operation Time	Complexity

pop O(1)

push O(1)

top O(1)

isEmpty O(1)

Since	the	stack	operates	at	one	end	that	remembers	the	top	of	the	stack	all	the	time,	if	we	want	to	search
for	an	item	in	the	stack,	it	means	we	have	to	search	through	the	whole	list.	It	is	the	same	for	accessing	a
particular	item	in	the	stack.	Although	it	is	not	good	practice	to	use	stack	for	these	sorts	of	operations,	if
we	want	to	do	so,	we	have	to	remember	that	the	time	complexity	is	based	on	more	than	general	stack
operations.

Operation Time	Complexity

Access O(n)

Search O(n)

The	space	complexity	for	stack	is	always	O(n).

So	far,	we	have	seen	how	to	implement	stack	using	a	PHP	array	and	it's	built-in	function	line	array_pop	and
array_push.	But	we	could	have	ignored	the	built-in	functions	and	implemented	it	with	manual	array
operations,	or	we	could	have	used	the	array_shift	and	array_unshift	built-in	functions.

Implementing	stack	using	linked	list
In	Chapter	3,	Using	Linked	Lists,	we	learned	how	to	implement	linked	lists.	We	saw	that	in	a	linked	list	we
can	insert	a	node	at	the	end,	remove	it	from	the	end,	insert	it	into	the	middle	of	the	list,	at	the	beginning,
and	so	on.	If	we	consider	the	insert	at	the	end	and	remove	at	the	end	operations	of	a	single	linked	list	data
structure,	we	can	easily	perform	something	similar	with	stack.	So	let	us	use	our	LinkedList	class	from	the
previous	chapter	to	implement	with	the	stack.	This	is	how	the	code	will	look:	class	BookList	implements
Stack	{	

private	$stack;	

public	function	__construct()	{	
$this->stack	=	new	LinkedList();	
}

public	function	pop():	string	{	

if	($this->isEmpty())	{	
throw	new	UnderflowException('Stack	is	empty');	
}	else	{	
$lastItem	=	$this->top();	
$this->stack->deleteLast();	
return	$lastItem;	
}	
}	

public	function	push(string	$newItem)	{	

$this->stack->insert($newItem);	
}	

public	function	top():	string	{	
return	$this->stack->getNthNode($this->stack->getSize())->data;	
}	

public	function	isEmpty():	bool	{	
return	$this->stack->getSize()	==	0;	
}	
}

Let	us	go	through	each	of	the	code	blocks	to	understand	what	is	happening	here.	If	we	start	from	the	top,
we	can	see	that	in	the	constructor	method,	we	are	creating	a	new	LinkedList	object	and	assigning	it	to	our
stack	property	instead	of	the	array	in	the	previous	example.	We	are	assuming	that	the	LinkedList	class	is

autoloaded,	or	the	file	is	included	in	the	script.	Let	us	now	focus	on	the	push	operation.	The	push
operation	is	as	simple	as	it	can	get.	We	just	need	to	insert	a	new	node	in	the	linked	list.	Since	we	do	not
have	any	size	limit	for	the	linked	list,	we	are	not	checking	any	overflow	here.

In	our	linked	list	implementation,	there	was	no	method	for	displaying	the	last	node.	We	had	inserted	a	new
last	node	and	removed	the	previous	last	node,	but	here,	we	need	to	get	the	value	of	the	last	node	without
deleting	it.	In	order	to	achieve	that	functionality,	which	is	exactly	the	top	operation	for	our	stack,	we	can
utilize	the	getNthNode	method	along	with	getSize	from	the	LinkedList	implementation.	This	way,	we	can	get	the
node.	But	we	have	to	remember	one	thing:	we	want	the	string	value	of	the	node,	not	the	full	node	object.
That	is	why	we	return	the	data	property	of	the	returned	node.

Similar	to	the	top	operation,	the	pop	operation	also	needs	to	return	the	last	node's	data	before	removing	it
from	the	list.	In	order	to	achieve	that,	we	use	the	top()	method	and	then	the	deleteLast()	method	from	the
LinkedList	class.	Now	let	us	run	a	sample	code	to	use	this	newly	implemented	BookList	class	for	stack
operations.	Here	is	the	code:

try	{	

				$programmingBooks	=	new	BookList();	

				$programmingBooks->push("Introduction	to	PHP7");	

				$programmingBooks->push("Mastering	JavaScript");	

				$programmingBooks->push("MySQL	Workbench	tutorial");	

				echo	$programmingBooks->pop()."\n";	

				echo	$programmingBooks->pop()."\n";	

				echo	$programmingBooks->top()."\n";	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

It	looks	quite	similar	to	the	last	example	we	ran,	but	here	we	are	trying	to	do	two	pop	operations	and	then
the	top	one.	So	the	output	will	look	like	the	following:

MySQL	Workbench	tutorial

Mastering	JavaScript

Introduction	to	PHP7

If	we	know	the	basic	behavior	of	the	stack	and	how	to	achieve	it,	we	can	use	an	array,	linked	list,	doubly
linked	list	to	implement	stack.	Since	we	have	already	seen	the	array	and	linked	list	implementations,	we
are	now	going	to	explore	the	SPL	implementation	of	a	stack,	which	actually	uses	a	doubly	linked	list.

$books	=	new	SplStack();	
$books->push("Introduction	to	PHP7");	
$books-
>push("Mastering	JavaScript");	
$books->push("MySQL	Workbench	tutorial");

echo	$books->pop()	.	"\n";	
echo	$books->top()	.	"\n";

Yes,	it	is	this	simple	to	build	a	stack	using	the	SplStack	class.	It	is	up	to	us	to	decide
whether	we	want	to	implement	it	using	a	PHP	array,	a	linked	list,	or	a	built-in	class,	such
as	SplStack.

Real	life	usage	of	stack
Stack	has	many	usages	in	modern	day	applications.	Whether	in	browser	histories	or	in	the	popular
development	term	stack	trace,	stack	is	used	everywhere.	Now	we	are	going	to	try	to	solve	a	real-world
problem	using	stack.

Nested	parentheses	matching
When	we	are	solving	mathematical	expressions,	the	first	thing	we	need	to	consider	is	the	correctness	of
nested	parentheses.	If	the	parentheses	are	not	nested	properly,	then	calculation	might	not	be	possible,	or
may	be	wrong.	Let	us	look	at	some	examples:

From	the	preceding	expressions,	only	the	first	one	is	correct;	the	other	two	are	incorrect,	as	the
parentheses	are	not	nested	properly.	In	order	to	identify	whether	or	not	the	parentheses	are	nested,	we	can
use	stack	to	implement	the	solution.	Here	is	the	pseudo	algorithm	for	the	implementation:

valid	=	true	

s	=	empty	stack	

for	(each	character	of	the	string)	{	

			if(character	=	(or	{	or	[)	

							s.push(character)	

		else	if	(character	=)	or	}	or])	{	

			if(s	is	empty)	

valid	=	false	

					last	=	s.pop()	

				if(last	is	not	opening	parentheses	of	character)		

									valid	=	false	

		}	

}	

if(s	is	not	empty)	

valid	=	false

If	we	look	at	the	pseudocode,	it	looks	very	simple.	The	goal	is	to	ignore	any	numbers,	operands,	or	empty
spaces	from	the	string	and	only	consider	the	parentheses,	curly	braces,	and	brackets.	If	they	are	opening
brackets,	we	will	push	into	the	stack.	If	they	are	closing	brackets,	we	are	going	to	pop	the	stack.	If	the
popped	parenthesis	is	not	the	opening	one	we	are	trying	to	match,	then	it	is	not	valid.	At	the	end	of	the
loop,	the	stack	should	be	empty	if	the	string	is	valid.	But	if	the	stack	is	not	empty,	then	there	are	extra
parentheses,	so	the	string	is	not	valid.	Now	let	us	convert	this	to	a	program:

function	expressionChecker(string	$expression):	bool	{	

				$valid	=	TRUE;	

				$stack	=	new	SplStack();	

				for	($i	=	0;	$i	<	strlen($expression);	$i++)	{	

				$char	=	substr($expression,	$i,	1);	

				switch	($char)	{	

						case	'(':	

						case	'{':	

						case	'[':	

						$stack->push($char);	

						break;	

						case	')':	

						case	'}':	

						case	']':	

						if	($stack->isEmpty())	{	

										$valid	=	FALSE;	

						}	else	{	

								$last	=	$stack->pop();	

								if	(($char	==	")"	&&	$last	!=	"(")		

										||	($char	==	"}"	&&	$last	!=	"{")		

										||	($char	==	"]"	&&	$last	!=	"["))	{	

						$valid	=	FALSE;	

								}	

				}	

				break;	

		}	

		if	(!$valid)	

						break;	

				}	

				if	(!$stack->isEmpty())	{	

				$valid	=	FALSE;	

				}	

				return	$valid;	

}

Now	let	us	run	the	three	examples	we	discussed	earlier:

$expressions	=	[];	

$expressions[]	=	"8	*	(9	-2)	+	{	(4	*	5)	/	(2	*	2)	}";	

$expressions[]	=	"5	*	8	*	9	/	(3	*	2))";	

$expressions[]	=	"[{	(2	*	7)	+	(15	-	3)]";	

foreach	($expressions	as	$expression)	{	

				$valid	=	expressionChecker($expression);	

				if	($valid)	{	

				echo	"Expression	is	valid	\n";	

				}	else	{	

				echo	"Expression	is	not	valid	\n";	

				}	

}	

This	will	produce	the	following	output,	which	is	exactly	what	we	wanted:

Expression	is	valid

Expression	is	not	valid

Expression	is	not	valid

Understanding	queue
The	queue	is	another	special	linear	data	structure	that	follows	the	First-In,	First-Out	(FIFO)	principle.
There	are	two	ends	for	the	operation:	one	to	append	to	the	queue	and	one	to	remove	from	the	queue.	This
is	different	from	a	stack,	where	we	used	one	end	for	both	the	add	and	remove	operations.	The	insertion
will	always	be	at	the	back	or	rear	section.	The	removal	of	an	element	will	take	place	from	the	frontend.
The	process	of	adding	a	new	element	to	the	queue	is	known	as	enqueue	and	the	process	of	removing	an
element	is	known	as	dequeue.	The	process	of	looking	at	the	front	element	of	the	queue	without	removing
the	element	is	known	as	a	peek,	similar	to	the	top	operation	of	a	stack.	The	following	figure	depicts	a
representation	of	a	queue:

Now,	if	we	define	an	interface	for	a	queue,	it	will	look	like	this:

interface	Queue	{	

				public	function	enqueue(string	$item);	

				public	function	dequeue();	

				public	function	peek();	

				public	function	isEmpty();	

}

Now	we	can	implement	the	queue	using	different	methods,	as	we	did	for	the	stack.	First,	we	are	going	to
implement	the	queue	using	a	PHP	array,	followed	by	LinkedList,	and	then	SplQueue.

class	AgentQueue	implements	Queue	{

	private	$limit;	
	private	$queue;

	public	function	__construct(int	$limit	=	20)	{	
	$this->limit	=	$limit;

	$this->queue	=	[];	
	}	

	public	function	dequeue():	string	{	

	if	($this->isEmpty())	{	
	throw	new	UnderflowException('Queue	is	empty');

	}	else	{	
	return	array_shift($this->queue);	
	}	
	}	

	public
function	enqueue(string	$newItem)	{	

	if	(count($this->queue)	<	$this->limit)	{

	array_push($this->queue,	$newItem);	
	}	else	{	
	throw	new
OverflowException('Queue	is	full');	
	}	
	}	

	public	function	peek():
string	{	
	return	current($this->queue);	
	}	

	public	function
isEmpty():	bool	{	
	return	empty($this->queue);	
	}	

}

try	{	
	$agents	=	new	AgentQueue(10);	
	$agents->enqueue("Fred");	

$agents->enqueue("John");	
	$agents->enqueue("Keith");	
	$agents-
>enqueue("Adiyan");	
	$agents->enqueue("Mikhael");	
	echo	$agents-
>dequeue()."\n";	
	echo	$agents->dequeue()."\n";	
	echo	$agents->peek()."\n";

}	catch	(Exception	$e)	{	
	echo	$e->getMessage();	
}

Fred
John
Keith

class	AgentQueue	implements	Queue	{	

	private	$limit;	
	private	$queue;

	public	function	__construct(int	$limit	=	20)	{	
	$this->limit	=	$limit;

	$this->queue	=	new	LinkedList();	
	}	

	public	function	dequeue():
string	{	

	if	($this->isEmpty())	{	
	throw	new	UnderflowException('Queue
is	empty');	
	}	else	{	
	$lastItem	=	$this->peek();	
	$this->queue-
>deleteFirst();	
	return	$lastItem;	
	}	
	}	

	public	function
enqueue(string	$newItem)	{	

	if	($this->queue->getSize()	<	$this->limit)	{

	$this->queue->insert($newItem);	
	}	else	{	
	throw	new
OverflowException('Queue	is	full');	
	}	
	}	

	public	function	peek():
string	{	
	return	$this->queue->getNthNode(1)->data;	
	}	

	public
function	isEmpty():	bool	{	
	return	$this->queue->getSize()	==	0;	
	}	

}

$agents	=	new	SplQueue();	
$agents->enqueue("Fred");	
$agents-
>enqueue("John");	
$agents->enqueue("Keith");	
$agents->enqueue("Adiyan");

$agents->enqueue("Mikhael");	
echo	$agents->dequeue()."\n";	
echo
$agents->dequeue()."\n";	
echo	$agents->bottom()."\n";

	

Understanding	priority	queue
	

A	priority	queue	is	a	special	type	of	queue	where	items	are	inserted	and	removed	based	on	their	priority.
In	the	programming	world,	the	use	of	the	priority	queue	is	immense.	For	example,	say	that	we	have	a	very
large	e-mail	queue	system	where	we	send	a	monthly	newsletter	through	a	queue	system.	What	if	we	need
to	send	an	urgent	email	to	a	user	using	the	same	queue	functionality?	Since	the	general	queue	principle	is
to	add	the	item	at	the	end,	the	process	of	sending	that	message	will	be	very	much	delayed.	In	order	to
solve	the	problem,	we	can	use	the	priority	queue.	In	such	a	case,	we	assign	a	priority	to	each	node	and
sort	them	based	on	that	priority.	An	item	with	higher	priority	will	go	to	the	top	of	the	list	and	will	be
dequeued	earlier.

We	can	take	two	approaches	in	building	a	priority	queue.

	

	

	

Ordered	sequence
	

If	we	plan	an	ordered	sequence	for	a	priority	queue,	it	can	have	either	an	ascending	or	a	descending
order.	The	positive	side	of	having	an	order	sequence	is	that	we	can	quickly	find	the	maximum	or	remove
the	maximum	priority	item,	as	we	can	find	it	using	O(1)	complexity.	But	the	insertion	will	take	more	time,
as	we	have	to	check	each	element	in	the	queue	to	place	the	item	in	the	right	position	based	on	its	priority.

	

	

	

Unordered	sequence
	

The	unordered	sequence	does	not	require	us	to	go	through	each	queue	element	in	order	to	place	the	newly
added	element.	It	is	always	added	to	the	rear	as	a	general	queue	principle.	As	a	result,	we	can	achieve	the
enqueue	operation	with	O(1)	complexity.	But	if	we	want	to	find	or	remove	the	highest	priority	element,
then	we	have	to	go	through	each	element	to	find	the	right	one.	As	a	result,	it	is	not	very	search-friendly.

Now	we	are	going	to	write	code	to	implement	the	priority	queue	using	an	ordered	sequence	with	a	linked
list.

	

	

Implementing	priority	queue	using	linked	list
So	far,	we	have	seen	a	linked	list	using	only	one	value,	which	is	the	node	data.	Now	we	need	to	pass
another	value	that	will	be	the	priority.	In	order	to	achieve	that,	we	need	to	change	our	ListNode
implementation:

class	ListNode	{

				public	$data	=	NULL;	

				public	$next	=	NULL;

				public	$priority	=	NULL;

				public	function	__construct(string	$data	=	NULL,	int	$priority	=	

						NULL)	{	

						$this->data	=	$data;

						$this->priority	=	$priority;

				}

}

Now	we	have	both	the	data	and	the	priority	as	part	of	the	node.	In	order	to	allow	this	priority	to	be
considered	during	the	insert	operation,	we	also	need	to	change	our	insert()	implementation	inside	the
LinkedList	class.	Here	is	the	modified	implementation:

public	function	insert(string	$data	=	NULL,	int	$priority	=	NULL)	{	

		$newNode	=	new	ListNode($data,	$priority);	

		$this->_totalNode++;	

		if	($this->_firstNode	===	NULL)	{	

						$this->_firstNode	=	&$newNode;	

		}	else	{	

						$previous	=	$this->_firstNode;	

						$currentNode	=	$this->_firstNode;	

						while	($currentNode	!==	NULL)	{	

						if	($currentNode->priority	<	$priority)	{	

									if	($currentNode	==	$this->_firstNode)	{	

									$previous	=	$this->_firstNode;	

									$this->_firstNode	=	$newNode;	

									$newNode->next	=	$previous;	

									return;	

									}	

									$newNode->next	=	$currentNode;	

									$previous->next	=	$newNode;	

									return;	

				}	

				$previous	=	$currentNode;	

				$currentNode	=	$currentNode->next;	

				}	

		}	

		return	TRUE;	

}

As	we	can	see,	our	insert	method	has	been	changed	to	take	both	the	data	and	the	priority	during	the	insert
operation.	As	usual,	the	first	process	is	to	create	a	new	node	and	increment	the	node	count.	There	can	be
three	possibilities	for	insertion,	shown	as	follows:

The	list	is	empty,	so	the	new	node	is	the	first	node.
The	list	is	not	empty,	but	the	new	item	has	the	highest	priority,	so.	So	it	becomes	the	first	node	and
the	previous	first	node	follows	it.
The	list	is	not	empty	and	the	priority	is	not	the	highest,	so	it	inserts	the	new	node	inside	the	list,	or

maybe	at	the	end	of	the	list.

In	our	implementation,	we	have	considered	all	three	possibilities,	three	facts.	As	a	result,	we	always	have
the	highest	priority	item	at	the	beginning	of	the	list.	Now	let	us	run	the	AgentQueue	implementation	with	this
new	code,	as	shown	in	the	following	example:

try	{	

				$agents	=	new	AgentQueue(10);	

				$agents->enqueue("Fred",	1);	

				$agents->enqueue("John",	2);	

				$agents->enqueue("Keith",	3);	

				$agents->enqueue("Adiyan",	4);	

				$agents->enqueue("Mikhael",	2);	

				$agents->display();	

				echo	$agents->dequeue()."\n";	

				echo	$agents->dequeue()."\n";	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

If	there	was	no	priority,	then	the	queue	should	have	been	Fred,	John,	Keith,	Adiyan,	and	Mikhael.	But	since	we
have	added	priorities	to	the	list,	the	output	is:

Adiyan

Keith

John

Mikhael

Fred

Since	Adiyan	has	the	highest	priority,	it	is	placed	at	the	beginning	of	the	queue,	even	though	it	was	inserted
in	the	fourth	place	in	the	queue.

Implement	a	priority	queue	using
SplPriorityQueue
PHP	already	has	a	built-in	support	for	implementing	a	priority	queue	using	SPL.	We	can	use	the
SplPriorityQueue	class	to	implement	our	priority	queues.	Here	is	the	sample	previous	example	using	a	linked
list,	but	this	time	we	are	choosing	SPL:

class	MyPQ	extends	SplPriorityQueue	{	

				public	function	compare($priority1,	$priority2)	{	

				return	$priority1	<=>	$priority2;	

				}

}

$agents	=	new	MyPQ();

$agents->insert("Fred",	1);	

$agents->insert("John",	2);

$agents->insert("Keith",	3);

$agents->insert("Adiyan",	4);

$agents->insert("Mikhael",	2);

//mode	of	extraction

$agents->setExtractFlags(MyPQ::EXTR_BOTH);	

//Go	to	TOP

$agents->top();

while	($agents->valid())	{

				$current	=	$agents->current();

				echo	$current['data']	.	"\n";

				$agents->next();

}

This	will	produce	the	same	result	as	the	linked	list	example.	The	added	advantage	of	extending	to	our
own	MyPQ	class	is	that	we	can	define	whether	we	want	to	sort	it	in	ascending	or	descending	order.	Here,
we	are	choosing	a	descending	order,	sorting	using	a	PHP	combined	comparison	operator,	or	the	spaceship
operator.

Most	of	the	time,	priority	queues	are	implemented	using	heap.	When	we	move	on	to	the
heap	chapter,	we	will	also	implement	a	priority	queue	using	heap.

Implementing	a	circular	queue
When	we	use	a	standard	queue,	every	time	we	dequeue	an	item,	we	have	to	re-buffer	the	whole	queue.	In
order	to	solve	this	problem,	we	can	use	a	circular	queue,	where	the	rear	is	followed	by	the	front,	forming
a	circle.	This	special	type	of	queue	requires	a	special	calculation	for	the	enqueue	and	dequeue	operations,
with	consideration	of	the	rear,	front,	and	limit	of	the	queue.	Circular	queues	are	always	fixed	queues,	and
are	also	known	as	circular	buffers,	or	ring	buffers.	The	following	figure	shows	a	representation	of	a

circular	queue:	

We	can	implement	a	circular	queue	using	a	PHP	array.	Since	we	have	to	calculate	the	positions	of	the	rear
and	front	part,	the	array	can	be	used	efficiently	for	this	purpose.	Here	is	an	example	of	a	circular	queue:

class	CircularQueue	implements	Queue	{	

				private	$queue;	

				private	$limit;	

				private	$front	=	0;	

				private	$rear	=	0;	

				public	function	__construct(int	$limit	=	5)	{	

						$this->limit	=	$limit;	

						$this->queue	=	[];	

				}	

				public	function	size()	{	

						if	($this->rear	>	$this->front)	

										return	$this->rear	-	$this->front;	

						return	$this->limit	-	$this->front	+	$this->rear;	

				}	

				public	function	isEmpty()	{	

						return	$this->rear	==	$this->front;	

				}	

				public	function	isFull()	{	

						$diff	=	$this->rear	-	$this->front;	

						if	($diff	==	-1	||	$diff	==	($this->limit	-	1))	

										return	true;	

						return	false;	

				}	

				public	function	enqueue(string	$item)	{	

						if	($this->isFull())	{	

										throw	new	OverflowException("Queue	is	Full.");	

						}	else	{	

										$this->queue[$this->rear]	=	$item;	

										$this->rear	=	($this->rear	+	1)	%	$this->limit;	

						}	

				}	

				public	function	dequeue()	{	

						$item	=	"";	

						if	($this->isEmpty())	{	

										throw	new	UnderflowException("Queue	is	empty");	

						}	else	{	

										$item	=	$this->queue[$this->front];	

										$this->queue[$this->front]	=	NULL;	

										$this->front	=	($this->front	+	1)	%	$this->limit;	

						}	

						return	$item;	

				}	

				public	function	peek()	{	

						return	$this->queue[$this->front];	

				}

}

Since	we	are	considering	0	as	a	front	marker,	the	total	size	of	the	queue	will	be	of	the	limit
-1.

Creating	a	double	-	ended	queue	(deque)
So	far,	we	have	implemented	queues	where	one	end	is	used	for	enqueuer,	and	is	known	as	the	rear,	and
the	other	end	is	used	for	dequeuer,	and	is	known	as	the	front.	So,	in	general,	each	end	should	be	used	for	a
specific	purpose.	But	what	if	we	need	to	enqueuer	and	dequeuer	from	both	ends?	This	is	possible	by
using	a	concept	called	the	double-ended	queue	or	deque.	In	deque,	both	ends	can	be	used	for	enqueue	and
dequeue	operations.	If	we	look	at	our	queue	implementation	using	linked	list,	we	find	that	we	can	insert	at
last,	insert	at	first,	delete	at	last,	and	delete	at	first	using	our	linked	list	implementation.	If	we	implement	a
new	deque	class	based	on	that,	we	can	easily	achieve	our	desired	goals.	The	following	figure	depicts	a
double-ended	queue:

Here	is	the	implementation	of	a	deque:

class	DeQueue	{	

				private	$limit;	

				private	$queue;	

				public	function	__construct(int	$limit	=	20)	{	

						$this->limit	=	$limit;	

						$this->queue	=	new	LinkedList();	

				}	

				public	function	dequeueFromFront():	string	{	

						if	($this->isEmpty())	{	

										throw	new	UnderflowException('Queue	is	empty');	

						}	else	{	

										$lastItem	=	$this->peekFront();	

										$this->queue->deleteFirst();	

										return	$lastItem;	

						}	

				}	

				public	function	dequeueFromBack():	string	{	

						if	($this->isEmpty())	{	

										throw	new	UnderflowException('Queue	is	empty');	

						}	else	{	

										$lastItem	=	$this->peekBack();	

										$this->queue->deleteLast();	

										return	$lastItem;	

						}	

				}	

				public	function	enqueueAtBack(string	$newItem)	{	

						if	($this->queue->getSize()	<	$this->limit)	{	

										$this->queue->insert($newItem);	

						}	else	{	

										throw	new	OverflowException('Queue	is	full');	

						}	

				}	

				public	function	enqueueAtFront(string	$newItem)	{	

						if	($this->queue->getSize()	<	$this->limit)	{	

										$this->queue->insertAtFirst($newItem);	

						}	else	{	

										throw	new	OverflowException('Queue	is	full');	

						}	

				}	

				public	function	peekFront():	string	{	

						return	$this->queue->getNthNode(1)->data;	

				}	

				public	function	peekBack():	string	{	

						return	$this->queue->getNthNode($this->queue->getSize())->data;	

				}	

				public	function	isEmpty():	bool	{	

						return	$this->queue->getSize()	==	0;	

				}	

}

Now	we	are	going	to	use	this	class	to	check	the	operations	of	a	double-ended	queue:

try	{	

				$agents	=	new	DeQueue(10);	

				$agents->enqueueAtFront("Fred");	

				$agents->enqueueAtFront("John");	

				$agents->enqueueAtBack("Keith");	

				$agents->enqueueAtBack("Adiyan");	

				$agents->enqueueAtFront("Mikhael");	

				echo	$agents->dequeueFromBack()	.	"\n";	

				echo	$agents->dequeueFromFront()	.	"\n";	

				echo	$agents->peekFront()	.	"\n";	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

If	we	look	at	the	preceding	code	example,	first	we	add	Fred	at	the	front,	then	we	add	John	at	the	front	again.
So	the	sequence	is	now	John,	Fred.	Then	we	add	Keith	at	the	back,	followed	by	Adiyan	at	the	back.	So	now
we	have	the	sequence	John,	Fred,	Keith,	Adiyan.	Lastly,	we	add	Mikhael	at	the	beginning.	So	the	final	sequence
is	Mikhael,	John,	Fred,	Keith,	Adiyan.

Since	we	are	performing	a	dequeue	from	the	back	first,	Adiyan	will	be	out	first,	and	then	Mikhael	from	the
front.	The	new	peek	at	the	front	will	be	John.	Here	is	the	output	when	you	run	the	code:

Adiyan

Mikhael

John

	

Summary
	

Stacks	and	queues	are	one	of	the	most	used	data	structures.	In	future	algorithms	and	data	structures,	we
can	use	these	abstract	data	types	in	different	ways.	In	this	chapter,	we	learned	of	the	different	ways	of
implementing	stacks	and	queues,	along	with	the	different	types	of	queues.	In	the	next	chapter,	we	are	going
to	talk	about	recursion	-	a	special	way	to	solve	bigger	problems	by	dividing	them	into	smaller	instances.

	

	

	

Applying	Recursive	Algorithms	-	Recursion
	

Solving	complex	problems	is	always	hard.	Even	for	programmers,	solving	complex	problems	can	prove
tougher,	and	sometimes,	a	special	solution	is	required.	Recursion	is	one	such	special	approach	that
computer	programmers	follow	to	solve	complex	problems.	In	this	chapter,	we	will	go	through	the
definition	of	recursion,	properties,	different	types	of	recursions,	and	lots	of	examples.	Recursion	is	not	a
new	concept;	in	nature,	we	see	lots	of	recursive	elements.	Fractals	show	recursive	behavior.	The

following	image	shows	natural	recursion:	

	

	

Understanding	recursion
Recursion	is	a	way	to	solve	larger	problems	by	dividing	them	into	smaller	problems.	In	other	words,
recursion	is	breaking	the	big	problem	into	smaller	similar	problems	to	solve	them	and	get	the	actual
results.	Often,	recursion	is	termed	as	a	function	calling	itself.	It	might	sound	strange,	but	the	fact	is	the
function	must	call	itself	when	it	is	in	recursion.	What	does	this	look	like?	Let's	look	at	an	example,	In
mathematics,	the	term	"factorial"	is	very	popular.	A	factorial	of	a	number	N	is	defined	as	multiplication	of
all	positive	integers	less	than	and	equal	to	N.	It	is	always	denoted	with	!	(an	exclamation	mark).	So,	a
factorial	of	5	can	be	written	as	follows:	5!	=	5	X	4	X	3	X	2	X	1

Similarly,	we	can	write	the	following	factorials	of	the	given	number::	4!	=	4	X	3	X	2	X	1

3!	=	3	X	2	X	1

2!	=	2	X	1

1!	=	1

If	we	look	closely	at	our	example,	we	can	see	that	we	can	write	factorial	of	5	in	terms	of	factorials	of	4
like	this:	5!	=	5	X	4!

Similarly,	we	can	write:	4!	=	4	X	3!

3!	=	3	X	2!

2!	=	2	X	1!

1!	=	1	X	0!

0!	=	1

Alternatively,	we	can	simply	say	in	general	terms	that:	n!	=	n	*	(n-1)!

This	represents	recursion.	We	are	breaking	each	of	the	steps	into	smaller	ones	and	solving	the	actual	big
problem.	Here	is	an	image	to	show	how	a	factorial	of	3	is	calculated:	

So,	the	steps	are	as	follows:

1.	 3!	=	3	X	2!
2.	 2!	=	2	X	1!

3.	 1!	=	1	X	0!
4.	 0!	=	1
5.	 1!	=	1	X	1	=	1
6.	 2!	=	2	X	1	=	2
7.	 3!	=	3	X	2	=	6

Properties	of	recursive	algorithms
Now,	the	question	can	be,	"If	a	function	calls	itself,	then	how	does	it	stop	or	know	when	to	finish	the
recursive	call?"	When	we	are	writing	a	recursive	solution,	we	have	to	make	sure	it	has	the	following
properties:

1.	 Each	recursive	call	should	be	on	a	smaller	subproblem.	Like	the	factorial	example,	a	factorial	of	6	is
solved	with	6	and	multiplication	of	a	factorial	of	5	and	so	it	goes	on.

2.	 It	must	have	a	base	case.	When	the	base	case	is	reached,	there	will	be	no	further	recursion,	and	the
base	case	must	be	able	to	solve	the	problem	without	any	further	recursive	call.	In	our	factorial
example,	we	did	not	go	any	further	down	from	0.	So,	in	this	case,	0	is	our	base	case.

3.	 There	should	not	be	any	cycle.	If	each	recursive	call	makes	a	call	to	the	same	problem,	then	there
will	be	a	never-ending	cycle.	After	some	repetitions,	the	computer	will	show	a	stack	overflow	error.

So,	if	we	now	write	our	factorial	program	using	PHP	7,	then	it	will	look	like	this:

function	factorial(int	$n):	int	{

			if	($n	==	0)

				return	1;

			return	$n	*	factorial($n	-	1);

}

In	the	preceding	example	code,	we	can	see	that	we	have	a	base	condition	where	we	are	returning	1	when
the	value	of	$n	is	0.	If	this	condition	is	not	met,	then	we	are	returning	a	multiplication	of	$n	and	a	factorial
of	$n-1.	So,	it	satisfies	property	to	both	numbers,	1	and	3.	We	are	avoiding	cycles	and	also	making	sure
each	recursive	call	is	creating	a	subproblem	of	the	bigger	one.	We	will	write	the	recursive	behavior	like
this	algorithm:

Recursion	versus	iterative	algorithms
If	we	analyze	our	factorial	function,	we	can	see	that	it	could	be	written	using	a	simple	iterative	approach
with	a	for	or	while	loop,	as	shown	here:

function	factorial(int	$n):	int	{	

				$result	=	1;	

				for	($i	=	$n;	$i	>	0;	$i--)	{

						$result	*=	$i;	

				}	

				return	$result;	

}

If	this	can	be	written	as	a	simple	iterative	one,	then	why	should	we	use	recursion?	Recursion	is	used	to
solve	more	complex	problems.	Not	all	problems	can	be	solved	iteratively	so	easily.	For	example,	we
need	to	show	all	the	files	in	a	certain	directory.	We	can	simply	do	this	by	running	a	loop	to	list	all	the
files.	However,	what	if	there	is	another	directory	inside	it?	Then,	we	have	to	run	another	loop	to	get	all
those	files	inside	that	directory.	What	if	there	is	another	directory	inside	that	directory	and	it	goes	on	and
on?	In	such	a	situation,	an	iterative	approach	might	not	help	at	all	or	might	create	a	complex	solution.	It	is
better	to	choose	a	recursive	approach	here.

Recursion	manages	a	call	stack	for	managing	function	calls.	As	a	result,	recursion	will	take	more	memory
and	time	to	complete	compared	to	iteration.	Also,	in	iteration,	in	each	step,	we	can	have	a	result,	but	for
recursion,	we	have	to	wait	until	the	base	case	to	execute	to	get	any	result.	If	we	consider	both	iterative
and	recursive	examples	for	a	factorial,	we	can	see	that	there	is	a	local	variable	called	$result	to	store	the
calculation	of	each	step.	However,	in	recursion,	there	is	no	need	for	local	variables	or	assignment.

Implementing	Fibonacci	numbers	using
recursion
In	mathematics,	Fibonacci	numbers	are	special	integer	sequences	where	a	number	is	composed	from
summation	of	the	past	two	numbers,	as	shown	in	the	following	the	expression:

If	we	implement	this	using	PHP	7,	it	will	look	like	this:

function	fibonacci(int	$n):	int	{	

				if	($n	==	0)	{	

				return	1;	

				}	else	if	($n	==	1)	{	

				return	1;	

				}	else	{	

				return	fibonacci($n	-	1)	+	fibonacci($n	-	2);	

				}	

}

If	we	consider	the	preceding	implementation,	we	can	see	it	is	a	bit	different	from	the	previous	examples.
Now,	we	are	calling	two	functions	from	one	function	call.	We	will	discuss	different	types	of	recursions
shortly.

Implementing	GCD	calculation	using	recursion
Another	common	use	of	recursion	is	implementing	Greatest	Common	Division	(GCD)	of	two	numbers.
In	GCD	calculation,	we	will	continue	until	a	remainder	becomes	0.	It	can	be	expressed	as	follows:

Now,	if	we	implement	recursively	using	PHP	7,	it	will	look	like	this:

function	gcd(int	$a,	int	$b):	int	{	

				if	($b	==	0)	{	

					return	$a;	

				}	else	{	

					return	gcd($b,	$a	%	$b);	

				}	

}

Another	interesting	part	of	this	implementation	is	that	unlike	a	factorial,	we	are	not	returning	from	a	base
case	to	other	steps	in	the	call	stack.	The	base	case	will	return	the	calculated	value.	This	is	one	of	the
optimized	ways	to	do	recursion.

Different	types	of	recursions
So	far,	we	have	seen	some	example	cases	of	recursion	and	how	it	is	being	used.	Though	the	term	says
recursion,	there	are	different	types	of	recursions.	We	will	explore	them	one	by	one.

	

Linear	recursion
	

One	of	the	most	commonly	used	recursions	in	the	programming	world	is	linear	recursion.	When	a	function
calls	itself	once	in	each	run,	we	will	call	it	a	linear	recursion.	Just	like	our	factorial	example,	when	we
are	breaking	the	big	calculation	to	smaller	ones	until	the	base	condition	is	reached,	we	call	it	winding.
When	we	are	returning	from	the	base	condition	to	the	first	recursive	call,	we	call	it	unwinding.	We	will
work	on	different	linear	recursions	in	the	upcoming	section	in	this	chapter.

	

	

	

Binary	recursion
	

In	binary	recursion,	the	function	calls	itself	twice	in	each	run.	As	a	result,	the	calculation	depends	on	two
results	from	two	different	recursive	calls	to	itself.	If	we	look	at	our	Fibonacci	sequence	generation
recursive	function,	we	can	easily	find	that	it	is	a	binary	recursion.	Other	than	this,	we	have	many
commonly	used	binary	recursions	in	the	programming	world,	such	as	binary	search,	divide	and	conquer,
merge	sort,	and	so	on.	The	following	image	shows	a	binary	recursion:	

	

	

	

Tail	recursion
	

A	recursive	method	is	tail	recursive	when	there	is	no	pending	operation	to	be	performed	on	return.	For
example,	in	our	factorial	code,	the	returned	value	is	used	to	multiply	with	the	previous	value	to	calculate
the	factorial.	So,	this	is	not	tail	recursive.	The	same	goes	for	the	Fibonacci	series	recursion.	If	we	look	at
our	GCD	recursion,	we	can	find	that	there	is	no	operation	to	do	after	the	return.	So,	the	final	return	or
base	case	return	is	actually	the	answer.	So,	GCD	is	an	example	of	tail	recursion.	Tail	recursion	is	also	a
form	of	linear	recursion.

	

	

Mutual	recursion
It	might	be	the	case	that	we	may	require	to	call	two	different	methods	recursively	from	two	different
methods	in	an	alternate	fashion.	For	example,	function	A()	calls	function	B()	and	function	B()	calls	function
A()	in	each	call.	This	is	known	as	mutual	recursion.

Nested	recursion
When	a	recursive	function	call	has	itself	as	the	parameter,	then	it	is	called	nested	recursion.	One	of	the
common	examples	of	nested	recursion	is	the	Ackermann	function.	Look	at	the	following	equation:	

If	we	look	at	the	last	line,	we	can	see	that	function	A	()	is	called	recursively,	but	the	second	parameter
itself	is	another	recursive	call.	So,	this	is	one	of	the	examples	of	nested	recursions.

Though	there	are	different	types	of	recursions	available,	we	will	only	use	those	that	are	required	based	on
our	needs.	Now,	we	will	see	some	real-life	usage	of	recursion	in	our	projects.

Building	an	N-level	category	tree	using	recursion
Building	a	multilevel	nested	category	tree	or	menu	is	always	a	problem.	Many	CMS	and	sites	only	allow
a	certain	level	of	nesting.	In	order	to	save	performance	issues	due	to	multiple	joins,	some	only	allow	3-4
levels	of	nesting	at	maximum.	Now,	we	will	explore	how	we	can	create	an	N-level	nested	category	tree
or	menu	with	the	help	of	recursion,	without	compromising	on	performance.	Here	is	our	approach	for	the
solution:

1.	 We	will	define	the	table	structure	for	the	category	in	the	database.
2.	 We	will	get	all	categories	in	the	table	without	the	use	of	any	join	or	multiple	queries.	It	will	be	a

single	database	query	with	a	simple	select	statement.
3.	 We	will	build	an	array	of	categories	such	that	we	can	utilize	the	recursion	with	that	to	display	the

nested	categories	or	menu.

Let's	assume	that	we	have	a	simple	table	structure	in	our	database	to	store	our	categories	and	it	looks	like
this:

CREATE	TABLE	`categories`	(

		`id`	int(11)	NOT	NULL,	

		`categoryName`	varchar(100)	NOT	NULL,	

		`parentCategory`	int(11)	DEFAULT	0,	

		`sortInd`	int(11)	NOT	NULL	

)	ENGINE=InnoDB	DEFAULT	CHARSET=utf8;

For	simplicity,	we	are	assuming	that	there	is	no	other	field	required	in	the	table.	Also,	we	have	some	data
in	the	table	like	this:

Id categoryName parentCategory sortInd

1 First 0 0

2 Second 1 0

3 Third 1 1

4 Fourth 3 0

5 Fifth 4 0

6 Sixth 5 0

7 Seventh 6 0

8 Eight 7 0

9 Ninth 1 0

10 Tenth 2 1

Now,	we	have	created	a	table	structured	for	our	database,	and	we	have	assumingly	also	entered	some
sample	data.	Let's	build	a	query	to	retrieve	this	data	so	that	we	can	move	to	our	recursive	solution:

$dsn	=	"mysql:host=127.0.0.1;port=3306;dbname=packt;";	

$username	=	"root";	

$password	=	"";	

$dbh	=	new	PDO($dsn,	$username,	$password);	

$result	=	$dbh->query("Select	*	from	categories	order	by	parentCategory	asc,	sortInd	asc",	PDO::FETCH_OBJ);	

$categories	=	[];	

foreach($result	as	$row)	{	

				$categories[$row->parentCategory][]	=	$row;

}

The	core	part	of	the	preceding	code	is	how	we	are	storing	our	categories	in	an	array.	We	are	storing	the
results	based	on	their	parent	category.	This	will	help	us	show	child	categories	of	a	category	recursively.
This	looks	pretty	simple.	Now,	based	on	the	categories	array,	let's	write	the	recursive	function	to	show
the	categories	hierarchically:

function	showCategoryTree(Array	$categories,	int	$n)	{

				if(isset($categories[$n]))	{	

						foreach($categories[$n]	as	$category)	{								

										echo	str_repeat("-",	$n)."".$category->categoryName."\n";	

										showCategoryTree($categories,	$category->id);										

						}

				}

				return;

}

The	preceding	code	actually	shows	all	the	categories	and	their	child	categories	recursively.	We	take	a
level	and	first	print	the	category	on	that	level.	Immediately,	we	will	check	whether	it	has	any	child	level
categories	or	not	with	the	code	showCategoryTree($categories,	$category->id).	Now,	if	we	call	the	recursive
function	with	a	root	level	(level	0),	then	we	will	have	the	following	output:

showCategoryTree($categories,	0);

The	output	for	this	will	be	as	follows:

First

-Second

--Tenth

-Third

---Fourth

----fifth

-----Sixth

------seventh

-------Eighth

-Nineth

As	we	can	see,	without	thinking	about	the	depth	of	the	category	level	or	multiple	queries,	we	can	build
nested	categories	or	menus	with	just	a	simple	query	and	recursive	function.	We	can	use		and		to
create	a	nested	menu	if	we	want	it	with	dynamic	show	and	hide	functionality.	This	can	be	vital	for	having
an	efficient	solution	to	the	problem	without	getting	into	implementation	blocks,	such	as	having	a	fixed
level	of	joins	or	fixed	level	of	categories.	The	preceding	example	is	a	perfect	display	of	tail	recursion
where	we	are	not	waiting	for	the	recursion	to	return	anything,	and	as	we	move	forward,	the	results	are
already	displayed.

Building	a	nested	comment	reply	system
Quite	often,	we	face	the	challenge	to	display	comment	replies	in	a	proper	way.	Showing	them
chronologically	does	not	fit	our	need	sometimes.	We	may	require	showing	them	in	such	a	way	that	the
reply	for	each	comment	is	below	the	actual	comment	itself.	In	other	words,	we	can	say	we	need	a	nested
comment	reply	system	or	threaded	comments.	We	want	to	build	something	similar	to	the	following
screenshot:

We	can	follow	the	same	steps	we	did	in	the	nested	category	section.	However,	this	time,	we	will	have
some	UI	elements	to	give	it	a	more	realistic	look.	Let's	assume	that	we	have	a	table	named	comments	with
the	following	data	and	columns.	For	simplicity,	we	are	not	going	into	multiple	table	relationships.	We	are
assuming	that	the	usernames	are	stored	in	the	same	table	with	the	comments:

Id comments username Datetime parentID postID

1 First	comment Mizan 2016-10-01	15:10:20 0 1

2 First	reply Adiyan 2016-10-02	04:09:10 1 1

3 Reply	of	first	reply Mikhael 2016-10-03	11:10:47 2 1

4 Reply	of	reply	of	first	reply Arshad 2016-10-04	21:22:45 3 1

5 Reply	of	reply	of	reply	of	first	reply Anam 2016-10-05	12:01:29 4 1

6 Second	comment Keith 2016-10-01	15:10:20 0 1

7 First	comment	of	second	post Milon 2016-10-02	04:09:10 0 2

8 Third	comment Ikrum 2016-10-03	11:10:47 0 1

9 Second	comment	of	second	post Ahmed 2016-10-04	21:22:45 0 2

10 Reply	of	second	comment	of	second	post Afsar 2016-10-18	05:18:24 9 2

Let's	now	write	a	prepared	statement	to	fetch	all	the	comments	from	a	post.	Then,	we	can	construct	an
array	similar	to	the	nested	category	one:

$sql	=	"Select	*	from	comments	where	postID	=	:postID	order	by	parentID	asc,	datetime	asc";	

$stmt	=	$dbh->prepare($sql,	array(PDO::ATTR_CURSOR	=>	PDO::CURSOR_FWDONLY));	

$stmt->setFetchMode(PDO::FETCH_OBJ);	

$stmt->execute(array(':postID'	=>	1));	

$result	=	$stmt->fetchAll();	

$comments	=	[];	

foreach	($result	as	$row)	{	

				$comments[$row->parentID][]	=	$row;

}

Now,	we	have	the	array	and	all	required	data	in	it;	we	can	now	write	a	function	that	will	call	recursively
to	display	the	comment	with	proper	indentations:

function	displayComment(Array	$comments,	int	$n)	{	

			if	(isset($comments[$n]))	{	

						$str	=	"";	

						foreach	($comments[$n]	as	$comment)	{	

										$str	.=	"<div	class='comment'>

												{$comment->username}";	

										$str	.=	"{$comment->datetime}";	

										$str	.=	""	.	$comment->comment	.	"

												</div>";	

										$str	.=	displayComment($comments,	$comment->id);	

										$str	.=	"";	

							}	

						$str	.=	"";	

						return	$str;	

				}	

				return	"";	

}	

echo	displayComment($comments,	0);	

Since	we	have	added	some	HTML	elements	in	the	PHP	code,	we	need	some	basic	CSS	to	make	it	work.
Here	is	the	CSS	code	we	have	written	to	make	it	a	clean	design.	Nothing	fancy,	but	pure	CSS	to	create	the
cascading	effects	and	some	basic	styling	for	each	section	of	the	comment:

ul	{	

						list-style:	none;	

						clear:	both;	

		}

		li	ul	{	

						margin:	0px	0px	0px	50px;	

		}	

		.pic	{	

						display:	block;	

						width:	50px;	

						height:	50px;	

						float:	left;	

						color:	#000;	

						background:	#ADDFEE;	

						padding:	15px	10px;	

						text-align:	center;	

						margin-right:	20px;	

		}

		.comment	{	

						float:	left;	

						clear:	both;	

						margin:	20px;	

						width:	500px;	

		}

		.datetime	{	

						clear:	right;	

						width:	400px;	

						margin-bottom:	10px;	

						float:	left;	

		}

As	mentioned	earlier,	we	are	not	trying	to	make	something	complex	here,	just	responsive,	device	friendly,
and	so	on.	We	are	assuming	that	you	can	integrate	the	logic	in	different	parts	of	your	application	without
any	problem.

Here	is	the	output	from	the	data	and	the	preceding	code:

From	the	preceding	two	examples,	we	can	see	that	it	is	very	easy	to	create	nested	contents	without	having
multiple	queries	or	having	a	limitation	of	join	statements	for	nesting.	We	do	not	even	require	a	self-join	to
generate	the	nested	data.

Finding	files	and	directories	using	recursion
Quite	often,	we	need	to	find	all	the	files	inside	a	directory.	This	includes	all	subdirectories	inside	it	and
also	directories	inside	those	subdirectories.	As	a	result,	we	need	a	recursive	solution	to	find	the	list	of
files	from	the	given	directory.	The	following	example	will	show	a	simple	recursive	function	to	list	all	the
files	in	a	directory:

function	showFiles(string	$dirName,	Array	&$allFiles	=	[])	{	

				$files	=	scandir($dirName);	

				foreach	($files	as	$key	=>	$value)	{	

						$path	=	realpath($dirName	.	DIRECTORY_SEPARATOR	.	$value);	

						if	(!is_dir($path))	{	

										$allFiles[]	=	$path;	

						}	else	if	($value	!=	"."	&&	$value	!=	"..")	{	

										showFiles($path,	$allFiles);	

										$allFiles[]	=	$path;	

						}	

			}	

				return;	

}	

$files	=	[];	

showFiles(".",	$files);

The	showFiles	function	actually	takes	a	directory	and	first	scans	the	directory	to	list	all	the	files	and
directories	under	it.	Then,	with	a	foreach	loop,	it	iterates	through	each	file	and	directory.	If	it	is	a	directory,
we	recall	the	.	function	again	to	list	the	files	and	directories	under	it.	This	continues	until	we	traverse	all
the	files	and	directories.	Now,	we	have	all	the	files	under	the	$files	array.	Now,	let's	show	the	files	using
a	foreach	loop	sequentially:

foreach($files	as	$file)	{

				echo	$file."\n";

}

This	will	have	the	following	output	in	the	command	line:

/home/mizan/packtbook/chapter_1_1.php

/home/mizan/packtbook/chapter_1_2.php

/home/mizan/packtbook/chapter_2_1.php

/home/mizan/packtbook/chapter_2_2.php

/home/mizan/packtbook/chapter_3_.php

/home/mizan/packtbook/chapter_3_1.php

/home/mizan/packtbook/chapter_3_2.php

/home/mizan/packtbook/chapter_3_4.php

/home/mizan/packtbook/chapter_4_1.php

/home/mizan/packtbook/chapter_4_10.php

/home/mizan/packtbook/chapter_4_11.php

/home/mizan/packtbook/chapter_4_2.php

/home/mizan/packtbook/chapter_4_3.php

/home/mizan/packtbook/chapter_4_4.php

/home/mizan/packtbook/chapter_4_5.php

/home/mizan/packtbook/chapter_4_6.php

/home/mizan/packtbook/chapter_4_7.php

/home/mizan/packtbook/chapter_4_8.php

/home/mizan/packtbook/chapter_4_9.php

/home/mizan/packtbook/chapter_5_1.php

/home/mizan/packtbook/chapter_5_2.php

/home/mizan/packtbook/chapter_5_3.php

/home/mizan/packtbook/chapter_5_4.php

/home/mizan/packtbook/chapter_5_5.php

/home/mizan/packtbook/chapter_5_6.php

/home/mizan/packtbook/chapter_5_7.php

/home/mizan/packtbook/chapter_5_8.php

/home/mizan/packtbook/chapter_5_9.php

These	were	solutions	for	some	common	challenges	we	face	during	development.	However,
there	are	other	places	where	we	will	use	recursion	heavily,	such	as	binary	search,	trees,
divide	and	conquer	algorithm,	and	so	on.	We	will	discuss	them	in	the	upcoming	chapters.

Analyzing	recursive	algorithms
Analysis	of	recursive	algorithms	depends	on	the	type	of	recursion	we	are	using.	If	it	is	linear,	the
complexity	will	be	different;	if	it	is	binary,	it	will	have	a	different	complexity.	So,	we	do	not	have	a
generic	complexity	for	the	recursive	algorithms.	We	have	to	analyze	it	on	a	case-by-case	basis.	Here,	we
will	analyze	factorial	series.	First,	let's	focus	on	the	factorial	part.	If	we	recall	from	this	section,	we	had
something	like	this	for	factorial	recursion:	function	factorial(int	$n):	int	{	
if	($n	==	0)	
return	1;	

return	$n	*	factorial($n	-	1);	
}

Let's	assume	that	it	will	take	T(n)	to	compute	factorial	($n).	We	will	focus	on	how	to	use	this	T(n)	in	terms
of	the	Big	O	notation.	Each	time	we	call	the	factorial	function,	there	are	certain	steps	involved:

1.	 Every	time,	we	are	checking	the	base	case.
2.	 Then,	we	call	factorial	($n-1)	on	each	loop.
3.	 We	do	a	multiplication	with	$n	on	each	loop.
4.	 Then,	we	return	the	result.

Now,	if	we	represent	this	using	T(n),	then	we	can	say:	T(n)	=	a	when	n	=	0

T(n)	=	T(n-1)	+	b	when	n	>	0

Here,	both	a	and	b	are	some	constants.	Now,	let's	generate	a	relationship	between	a	and	b	with	n.	We	can
easily	write	the	equation	as	follows:	T(0)	=	a

T(1)	=	T(0)	+	b	=	a	+	b

T(2)	=	T(1)	+	b	=	a	+	b	+	b	=	a	+	2b

T(3)	=	T(2)	+	b	=	a	+	2b	+	b	=	a	+	3b

T(4)	=	T(3)	+	b	=	a	+	3b	+	b	=	a	+	4b

We	can	see	that	a	pattern	is	emerging	here.	So,	we	can	establish	that:	T(n)	=	a	+	(n)	b

Alternatively,	we	can	also	say	in	simple	terms	that	T(n)	=	O(n).

So,	the	factorial	recursion	has	a	linear	complexity	of	O(n).

A	fibonacci	sequence	with	recursion	has	approximately	O(2n)	complexity.	The	calculation
is	very	elaborative	as	we	have	to	consider	both	the	lower	bound	and	upper	bound	for	the
Big	O	notation.	In	the	upcoming	chapters,	we	will	also	analyze	binary	recursion	such	as
binary	search	and	merge	sorts.	We	will	focus	more	on	recursive	analysis	in	those

chapters.

Maximum	recursion	depth	in	PHP
Since	recursion	is	the	process	when	a	function	calls	itself,	we	can	have	a	valid	question	in	mind	such	as
"how	deep	can	we	go	with	this	recursion?".	Let's	do	a	small	program	for	this:

function	maxDepth()	{

				static	$i	=	0;

				print	++$i	.	"\n";

				maxDepth();

}

maxDepth();

Can	we	guess	the	max	depth	level?	The	depth	reached	917,056	levels	before	exhausting	the	memory	limit.
If	XDebug	is	enabled,	then	the	limit	will	be	much	less	compared	to	this.	It	also	depends	on	your	memory,
OS,	and	PHP	settings	such	as	memory	limit	and	max	execution	time.

Though	we	have	the	option	to	go	very	deep	with	our	recursion,	it	is	always	important	to	remember	that	we
must	have	control	with	our	recursive	function.	We	should	know	the	base	conditions	and	where	the
recursion	must	end.	Otherwise,	it	might	create	some	wrong	results	or	end	abruptly.

Using	SPL	recursive	iterators
The	Standard	PHP	Library	SPL	has	many	built-in	iterators	for	recursion	purposes.	We	can	use	them	as	per
our	need,	without	taking	the	pain	of	implementing	them	from	scratch.	Here	is	the	list	of	iterators	and	their
functionality:

RecursiveArrayIterator:	This	recursive	iterator	allows	iterating	over	any	type	of	array	or	objects
and	modifying	the	key	or	values	or	unsetting	them.	It	also	allows	iterating	over	the	current	iterator
entry.

RecursiveCallbackFilterIterator:	If	we	are	looking	forward	to	applying	a	callback	recursively	to
any	array	or	objects,	this	iterator	can	be	very	helpful.

RecursiveDirectoryIterator:	This	iterator	allows	iterating	any	directory	or	filing	systems.	It	makes
the	directory	listing	very	easy.	For	example,	we	can	rewrite	the	directory	listing	program	we	wrote
in	this	chapter	easily	using	this	iterator:

$path	=	realpath('.');	

$files	=	new	RecursiveIteratorIterator(

			new	RecursiveDirectoryIterator($path),	RecursiveIteratorIterator::SELF_FIRST);	

foreach	($files	as	$name	=>	$file)	{	

				echo	"$name\n";	

}

RecursiveFilterIterator:	If	we	are	looking	for	a	filter	option	in	our	iteration	recursively,	we	can
use	this	abstract	iterator	to	implement	the	filtering	part.

RecursiveIteratorIterator:	If	we	want	to	iterate	over	any	recursive	iterator,	we	can	use	this	one.	It
is	already	built-in,	and	we	can	easily	apply	it.	An	example	of	how	it	is	used	is	shown	in	the
directory	iterator	section	in	the	RecursiveDirectoryIterator	section.

RecursiveRegexIterator:	If	you	want	to	apply	a	regular	expression	to	filter	an	iterator,	we	can	use
this	iterator	along	with	other	iterators.

RecursiveTreeIterator:	The	recursive	tree	iterator	allows	us	to	create	a	graphical	representation
like	a	tree	for	any	directory	or	multidimensional	array.	For	example,	the	following	football	team	list
array	will	produce	a	tree	structure:

$teams	=	array(

				'Popular	Football	Teams',	

				array(

		'La	Lega',	

		array('Real	Madrid',	'FC	Barcelona',	'Athletico	Madrid',	'Real		

				Betis',	'Osasuna')	

),	

				array(

		'English	Premier	League',	

		array('Manchester	United',	'Liverpool',	'Manchester	City',	'Arsenal',			

				'Chelsea')	

)	

);	

$tree	=	new	RecursiveTreeIterator(

		new	RecursiveArrayIterator($teams),	null,	null,	RecursiveIteratorIterator::LEAVES_ONLY	

);	

foreach	($tree	as	$leaf)	

				echo	$leaf	.	PHP_EOL;

The	output	will	look	like	this:

|-Popular	Football	Teams

|	|-La	Lega

|			|-Real	Madrid

|			|-FC	Barcelona

|			|-Athletico	Madrid

|			|-Real	Betis

|			\-Osasuna

		|-English	Premier	League

				|-Manchester	United

				|-Liverpool

				|-Manchester	City

				|-Arsenal

				\-Chelsea

Using	the	PHP	built-in	function
array_walk_recursive
The	array_walk_recursive	can	be	a	very	handy	built-in	function	for	PHP	as	it	can	traverse	any	size	of	array
recursively	and	apply	a	callback	function.	Whether	we	want	to	find	whether	an	element	is	in	a
multidimensional	array	or	not,	or	get	the	total	sum	of	the	array	of	the	multidimensional	array,	we	can	use
this	function	without	any	problem.

The	following	code	sample	will	produce	an	output	of	136	when	executed:

function	array_sum_recursive(Array	$array)	{	

				$sum	=	0;	

				array_walk_recursive($array,	function($v)	use	(&$sum)	{	

						$sum	+=	$v;	

				});	

				return	$sum;	

}	

$arr	=		

[1,	2,	3,	4,	5,	[6,	7,	[8,	9,	10,	[11,	12,	13,	[14,	15,	16]]]]];	

echo	array_sum_recursive($arr);	

The	other	two	built-in	recursive	array	functions	in	PHP	are	array_merge_recursive	and
array_replace_recursive.	We	can	use	them	to	merge	multiple	arrays	to	one	or	replace	from
multiple	arrays,	respectively.

	

Summary
	

So	far,	we	discussed	different	properties	and	practical	usage	of	recursion.	We	have	seen	how	to	do	the
analysis	of	recursive	algorithms.	Computer	programming	and	recursion	are	two	inseparable	parts.	The
usage	of	recursion	is	almost	everywhere	in	the	programming	world.	In	the	upcoming	chapters,	we	will
explore	it	more	and	apply	wherever	it's	applicable.	In	the	next	chapter,	we	will	discuss	another	special
data	structure	called	"tree".

	

	

	

Understanding	and	Implementing	Trees
	

Our	exploration	of	data	structures	has	so	far	touched	the	linear	parts	only.	Whether	we	used	arrays,	linked
lists,	stacks,	or	queues,	all	are	linear	data	structures.	We	have	seen	the	complexities	of	linear	data
structure	operations,	and	most	of	the	time,	the	insertion	and	deletion	can	be	performed	with	O(1)
complexity.	However,	the	searching	is	a	little	complicated	and	takes	O(n)	complexity.	The	only	exception
is	a	PHP	array,	which,	in	fact,	works	as	a	hash	table	and	can	be	searched	in	O(1)	if	the	index	or	keys	are
managed	in	such	a	way.	In	order	to	solve	this	problem,	we	can	use	a	hierarchical	data	structure	instead	of
the	linear	one.	Hierarchical	data	can	solve	many	issues	that	a	linear	data	structure	cannot	solve	easily.
Whenever	we	are	talking	about	family	tree,	organization	structure,	and	network	connectivity	diagrams,	we
are	actually	talking	about	hierarchical	data.	Trees	are	a	special	Abstract	Data	Type	(ADT)	that
represents	hierarchical	data.	Unlike	a	linked	list,	which	is	also	an	ADT,	trees	are	hierarchical	compared
to	the	linear	nature	of	linked	lists.	In	this	chapter,	we	will	explore	the	world	of	trees.	A	perfect	example

of	a	tree	structure	can	be	a	family	tree,	just	like	the	following	image:	

	

	

Tree	definition	and	properties
A	tree	is	a	hierarchical	collection	of	nodes	or	vertices	connected	by	edges.	Trees	cannot	have	cycles,	and
only	edges	will	exist	between	a	node	and	its	descended	nodes	or	child	nodes.	Two	child	nodes	of	a	same
parent	cannot	have	any	edges	in	between	them.	Each	node	can	have	a	parent	other	than	the	top	node,
which	is	also	known	as	the	root	node.	There	can	be	only	one	root	node	per	tree.	Each	node	can	have	zero
or	more	child	nodes.	In	the	following	diagram,	A	is	the	root	node,	and	B,	C,	and	D	are	the	child	nodes	of
A.	We	can	also	say	that	A	is	the	parent	node	of	B,	C,	and	D.	B,	C,	and	D	are	known	as	siblings	as	they	are

child	nodes	from	the	same	parent,	A:	

The	node	that	does	not	have	any	children	is	known	as	a	leaf.	In	the	preceding	diagram,	K,	L,	F,	G,	M,	I,
and	J	are	leaf	nodes.	Leaf	nodes	are	also	known	as	external	nodes	or	terminal	nodes.	A	node,	other	than
the	root,	having	at	least	one	child,	is	known	as	an	internal	node.	Here,	B,	C,	D,	E,	and	H	are	internal
nodes.	Here	are	some	other	common	terms	we	use	when	describing	tree	data	structure:

Descendent:	This	is	a	node	that	can	be	reached	from	a	parent	node	by	repeated	proceedings.
For	example,	M	is	a	descendent	of	C	in	the	previous	diagram.
Ancestor:	This	is	a	node	that	can	be	reached	from	a	child	node	to	a	parent	node	by	a	repeated
way.	For	example,	B	is	the	ancestor	of	L.
Degree:	The	total	number	of	child	nodes	of	a	particular	parent	node	is	known	as	its	degree.	In
our	example,	A	has	degree	3,	B	has	degree	1,	C	has	degree	3,	and	D	has	degree	2.
Path:	The	sequence	of	nodes	and	edges	from	a	source	node	to	a	target	node	is	known	as	the
path	between	two	nodes.	The	length	of	the	path	is	the	number	of	nodes	in	the	path.	In	our
example,	the	path	between	A	to	M	is	A-C-H-M,	and	the	length	of	the	path	is	4:

Height	of	node:	The	height	of	a	node	is	defined	by	the	number	of	edges	between	the	node	and	the
deepest	level	of	the	descendent	node.	For	example,	the	height	of	node	B	is	2.
Level:	The	level	represents	the	generation	of	nodes.	If	a	parent	node	is	in	level	n,	its	child	node	will
be	in	the	n+1	level.	So,	the	level	is	defined	by	1+	number	of	edges	between	the	node	and	the	root.
Here:

Root	A	is	in	Level	0
B,	C,	and	D	are	in	Level	1
E,	F,	G,	H,	I,	and	J	are	in	Level	2
K,	L,	and	M	are	in	Level	3

Height	of	tree:	The	height	of	a	tree	is	defined	by	the	height	of	its	root	node.	Here,	the	height	of	the
tree	is	3.
Subtree:	In	a	tree	structure,	each	child	forms	a	subtree	recursively.	In	other	words,	a	tree	consists	of
many	subtrees.	For	example,	B	forms	a	subtree	with	E,	K,	and	L,	whereas	E	forms	a	subtree	with	K
and	L.	In	the	preceding	example,	we	have	identified	each	in	the	left-hand	side	in	different	shades.
We	can	do	the	same	for	C	and	D	and	their	subtrees	as	well.
Depth:	The	depth	of	a	node	is	determined	by	the	number	of	edges	between	the	node	and	the	root
node.	For	example,	in	our	tree	image,	the	depth	of	H	is	2	and	the	depth	of	L	is	3.
Forest:	A	forest	is	a	set	of	zero	or	more	disjoint	trees.
Traverse:	This	indicates	the	process	of	visiting	nodes	in	a	specific	order.	We	will	use	this	term
often	in	the	upcoming	sections.
Keys:	A	key	is	a	value	from	the	node	that	is	used	for	searching	purposes.

Implementing	a	tree	using	PHP
So	far,	you	have	learned	about	different	properties	of	a	tree	data	structure.	If	we	compare	a	tree	data
structure	with	a	real-life	example,	we	can	consider	our	organization	structure	or	family	tree	to	represent
the	data	structure.	For	an	organization	structure,	there	is	one	root	node	that	can	be	the	CEO	of	the
company,	followed	by	CXO-level	employees,	followed	by	other	level	employees.	Here,	we	are	not
restricting	any	degree	for	a	particular	node.	This	means	a	node	can	have	multiple	children.	So,	let's	think
of	a	node	structure	where	we	can	define	the	node	property,	its	parent	node,	and	its	children	nodes.	It	might
look	something	like	this:

class	TreeNode	{	

				public	$data	=	NULL;	

				public	$children	=	[];	

				public	function	__construct(string	$data	=	NULL)	{	

						$this->data	=	$data;	

				}	

				public	function	addChildren(TreeNode	$node)	{	

						$this->children[]	=	$node;	

				}	

}	

If	we	look	at	the	preceding	code,	we	can	see	that	we	have	declared	two	public	properties	for	data	and
children.	We	also	have	a	method	to	add	children	to	a	particular	node.	Here,	we	are	just	appending	the
new	child	node	at	the	end	of	the	array.	This	will	give	us	an	option	to	add	multiple	nodes	as	children	for	a
particular	node.	As	a	tree	is	a	recursive	structure,	it	will	help	us	build	a	tree	recursively	and	also	traverse
the	tree	in	a	recursive	manner.

Now,	we	have	the	node;	let's	build	a	tree	structure	that	will	define	the	root	node	of	the	tree	and	also	a
method	to	traverse	the	whole	tree.	So,	the	basic	tree	structure	will	look	like	this:

class	Tree	{	

				public	$root	=	NULL;	

				public	function	__construct(TreeNode	$node)	{	

						$this->root	=	$node;	

				}	

				public	function	traverse(TreeNode	$node,	int	$level	=	0)	{	

						if	($node)	{	

								echo	str_repeat("-",	$level);	

								echo	$node->data	.	"\n";	

								foreach	($node->children	as	$childNode)	{	

										$this->traverse($childNode,	$level	+	1);	

								}	

						}	

				}	

}	

The	preceding	code	shows	a	simple	tree	class	where	we	can	store	the	root	node	reference	and	also
traverse	the	tree	from	any	node.	In	the	traverse	part,	we	are	visiting	each	child	node	and	then	immediately
recursively	calling	the	traverse	method	to	get	the	children	of	the	current	node.	We	are	passing	a	level	to
print	out	a	dash	(-)	at	the	beginning	of	the	node	name	so	that	we	can	understand	the	child	level	data	easily.

Let's	now	create	the	root	node	and	assign	it	to	the	tree	as	a	root.	The	code	will	look	like	this:

$ceo	=	new	TreeNode("CEO");	

				$tree	=	new	Tree($ceo);	

Here,	we	created	the	first	node	as	CEO,	and	then	created	the	tree	and	assigned	the	CEO	node	as	the	root
node	of	the	tree.	Now,	it	is	time	to	grow	our	tree	from	the	root	node.	Since	we	choose	the	example	of	the
CEO,	we	will	now	add	CXOs	and	other	employees	under	the	CEO.	Here	is	the	code	for	this:

$cto					=	new	TreeNode("CTO");	

$cfo					=	new	TreeNode("CFO");	

$cmo					=	new	TreeNode("CMO");	

$coo					=	new	TreeNode("COO");	

$ceo->addChildren($cto);	

$ceo->addChildren($cfo);	

$ceo->addChildren($cmo);	

$ceo->addChildren($coo);	

$seniorArchitect	=	new	TreeNode("Senior	Architect");	

$softwareEngineer	=	new	TreeNode("Software	Engineer");	

$userInterfaceDesigner						=	new	TreeNode("User	Interface	Designer");	

$qualityAssuranceEngineer	=	new	TreeNode("Quality	Assurance	Engineer");	

$cto->addChildren($seniorArchitect);	

$seniorArchitect->addChildren($softwareEngineer);	

$cto->addChildren($qualityAssuranceEngineer);	

$cto->addChildren($userInterfaceDesigner);	

$tree->traverse($tree->root);	

Here	we	are	creating	four	new	nodes	(CTO,	CFO,	CMO,	and	COO)	at	the	beginning	and	assigning	them
as	child	nodes	of	the	CEO	node.	Then	we	are	creating	Senior	Architect	and	here	is	the	Software	engineer
node	followed	by	the	user	interface	designer	and	Quality	assurance	engineer.	We	have	assigned	the	senior
software	engineer	node	to	be	a	child	node	of	the	senior	architect	node	and	senior	architect	to	be	a	child
node	of	CTO,	along	with	user	interface	engineer	and	quality	assurance	engineer.	The	last	line	is	to	display
the	tree	from	the	root.	This	will	output	the	following	lines	in	our	command	line:

CEO

-CTO

--Senior	Architect

---Software	Engineer

--Quality	Assurance	Engineer

--User	Interface	Designer

-CFO

-CMO

-COO

If	we	consider	the	preceding	output,	we	have	CEO	at	level	0.	CTO,	CFO,	CMO,	and	COO	are	at	level	1.	Senior
Architect,	User	Interface	Designer,	and	Quality	Assurance	Engineer	are	at	level	2	and	Software	Engineer	is	at	level	3.

We	have	constructed	a	basic	tree	data	structure	using	PHP.	Now,	we	will	explore	the	different	types	of
trees	we	have.

Different	types	of	tree	structures
There	are	many	types	of	tree	data	structures	present	in	the	programming	world.	We	will	explore	some	of
the	most	used	tree	structures	here.

Binary	tree
Binary	is	the	most	basic	form	of	tree	structure	where	each	node	has	a	maximum	of	two	child	nodes.	The
child	nodes	are	known	as	left	and	right	nodes.	A	binary	tree	will	look	like	the	one	shown	in	the	following
diagram:

	

Binary	search	tree
	

A	binary	search	tree	(BST)	is	a	special	type	of	binary	tree	where	the	nodes	are	stored	in	a	sorted	manner.
It	is	sorted	in	such	a	way	that	at	any	given	point,	a	node	value	must	be	greater	than	or	equal	to	the	left
child	node	value	and	smaller	than	the	right	child	node	value.	Each	node	has	to	satisfy	this	property	to
consider	it	as	a	binary	search	tree.	Since	the	nodes	are	sorted	in	a	particular	order,	the	binary	search
algorithm	can	be	applied	to	search	items	in	a	BST	in	logarithmic	time.	It	is	always	better	than	linear
searching,	which	takes	O(n)	time,	and	we	will	explore	it	in	the	next	chapter.	Here	is	an	example	of	a

binary	search	tree:	

	

	

Self-balanced	binary	search	tree
A	self-balanced	binary	search	tree	or	height-balance	binary	search	tree	is	a	special	type	of	binary	search
tree	that	attempts	to	keep	the	height	or	number	of	levels	of	the	tree	as	small	as	possible	all	the	time	by
adjusting	automatically.	For	example,	the	following	diagram	shows	a	binary	search	tree	on	the	left	and	a
the	self-balanced	binary	search	tree	on	the	right:

A	height-balanced	binary	tree	is	always	better	as	it	helps	search	operations	faster	compared	to	a	regular
BST.	There	are	different	implementations	of	self-balanced	or	height-balanced	binary	search	trees.	Some
of	the	popular	ones	are	as	follows:

AA	tree
AVL	tree
Red-black	tree
Scapegoat	tree
Splay	tree
2-3	tree
Treap

We	will	discuss	few	of	the	height-balanced	trees	in	the	following	sections.

	

AVL	tree
	

An	AVL	tree	is	a	self-balancing	binary	search	tree	where	the	heights	of	two	child	subtrees	of	a	node	will
differ	by	a	maximum	of	1.	If	the	height	increases,	in	any	case,	there	will	be	a	rebalance	to	make	the	height
difference	to	1.	This	gives	the	AVL	tree	an	added	advantage	of	logarithmic	complexity	for	different

operations.	Here	is	an	example	of	an	AVL	tree:	

	

	

	

Red-black	tree
	

A	red-black	tree	is	a	self-balanced	binary	search	tree	with	some	extra	properties,	which	is	the	color.	Each
node	in	the	binary	tree	stores	one	extra	bit	of	information,	which	is	known	as	color	and	can	have	either
red	or	black	as	values.	Like	an	AVL	tree,	a	red-black	tree	is	also	used	for	real-time	applications	as	the
average	and	worst	case	complexity	is	also	logarithmic.	A	sample	red-black	tree	looks	like	this:	

	

	

	

B-tree
	

A	B-tree	is	a	special	type	of	binary	tree,	which	is	self-balanced.	This	is	not	the	same	as	a	self-balanced
binary	search	tree.	The	key	difference	is	that	in	a	B-tree,	we	can	have	any	number	of	nodes	as	child
nodes,	not	just	two.	A	B-tree	is	used	for	a	large	set	of	data	and	is	mainly	used	in	filesystems	and
databases.	The	complexity	of	different	operations	in	a	B-tree	is	logarithmic.

	

	

N-ary	Tree
An	N-ary	tree	is	a	special	type	of	tree	where	a	node	can	have	maximum	N	children.	This	is	also	known	as
a	k-way	tree	or	M-ary	tree.	A	binary	tree	is	an	N-ary	tree	where	the	value	of	N	is	2.

	

Understanding	a	binary	tree
	

We	always	get	confused	with	binary	trees	and	binary	search	trees.	As	we	have	seen	in	the	definition,	BST
is	a	sorted	binary	tree.	If	it	is	sorted,	then	we	can	have	the	performance	improvement	compared	to	a
regular	binary	tree.	Each	binary	tree	node	can	have	a	maximum	of	two	child	nodes,	which	are	known	as
the	left	child	node	and	right	child	node.	However,	based	on	the	type	of	binary	tree,	there	can	be	zero,	one,
or	two	child	nodes.

We	can	also	classify	binary	trees	into	different	categories:

Full	binary	tree:	A	full	binary	tree	is	a	tree	that	has	either	zero	or	two	child	nodes	on	each	node.	A
full	binary	tree	is	also	known	as	a	proper	tree	or	a	plane	binary	tree.
Perfect	binary	tree:	A	perfect	binary	tree	is	a	binary	tree	in	which	all	internal	nodes	have	exactly
two	child	nodes	and	all	leaves	have	the	same	level	or	depth.
Complete	binary	tree:	A	complete	binary	tree	is	a	binary	tree	in	which	all	levels,	except	the	last
level,	are	completely	filled	and	all	nodes	are	as	far	left	as	possible.	The	following	diagram	shows
the	full	binary	tree,	complete	binary	tree,	and	perfect	binary	tree:

	

	

Implementing	a	binary	tree
We	will	now	create	a	binary	tree	(not	a	binary	search	tree).	The	key	factor	to	have	in	a	binary	tree	is	that
we	must	have	two	placeholders	for	the	left	child	node	and	the	right	child	node,	along	with	the	data	we
want	to	store	in	the	node.	A	simple	implementation	of	a	binary	node	will	look	like	this:

class	BinaryNode	{	

				public	$data;	

				public	$left;	

				public	$right;	

				public	function	__construct(string	$data	=	NULL)	{	

						$this->data	=	$data;	

						$this->left	=	NULL;	

						$this->right	=	NULL;	

				}	

				public	function	addChildren(BinaryNode	$left,	BinaryNode	$right)	{	

						$this->left	=	$left;

						$this->right	=	$right;

				}

}

The	preceding	code	shows	that	we	have	a	class	with	tree	properties	to	store	data,	left	and	right.	When	we
are	constructing	a	new	node,	we	are	adding	the	node	value	to	the	data	property,	and	left	and	right	is	kept
NULL	as	we	are	not	sure	if	we	need	those	or	not.	We	also	have	an	addChildren	method	to	add	left	children	and
right	children	to	a	particular	node.

Now,	we	will	create	a	binary	tree	class	where	we	can	define	the	root	node	as	well	as	the	traversal
method	similar	to	our	basic	tree	implementation	earlier	in	this	chapter.	The	difference	between	two
implementations	is	the	traversal	process.	In	our	previous	example,	we	used	foreach	to	traverse	each	child
node	as	we	did	not	know	how	many	nodes	are	there.	Since	each	node	in	the	binary	tree	can	have	a
maximum	of	two	nodes	and	they	are	named	as	left	and	right,	we	can	only	traverse	the	left	node	and	then
the	right	node	for	each	particular	node	visit.	The	changed	code	will	look	like	this:

class	BinaryTree	{	

				public	$root	=	NULL;	

				public	function	__construct(BinaryNode	$node)	{	

				$this->root	=	$node;	

				}	

				public	function	traverse(BinaryNode	$node,	int	$level				

						=	0)	{	

						if	($node)	{	

										echo	str_repeat("-",	$level);	

										echo	$node->data	.	"\n";	

										if	($node->left)	

												$this->traverse($node->left,	$level	+	1);	

										if	($node->right)	

												$this->traverse($node->right,	$level	+	1);	

									}	

				}	

}	

It	looks	very	similar	to	the	basic	tree	class	we	had	earlier	in	this	chapter.	Now,	let's	fill	up	the	binary	tree
with	some	nodes.	Usually,	in	any	football	or	cricket	tournament,	we	have	knockout	rounds	where	two
teams	play	with	each	other,	the	winner	moves	forward,	and	it	continues	to	the	final.	We	can	have	a	similar
structure	as	a	binary	tree	for	our	example.	So,	let's	create	some	binary	nodes	and	structure	them	in	a
hierarchy:

$final	=	new	BinaryNode("Final");	

$tree	=	new	BinaryTree($final);	

$semiFinal1	=	new	BinaryNode("Semi	Final	1");	

$semiFinal2	=	new	BinaryNode("Semi	Final	2");	

$quarterFinal1	=	new	BinaryNode("Quarter	Final	1");	

$quarterFinal2	=	new	BinaryNode("Quarter	Final	2");	

$quarterFinal3	=	new	BinaryNode("Quarter	Final	3");	

$quarterFinal4	=	new	BinaryNode("Quarter	Final	4");	

$semiFinal1->addChildren($quarterFinal1,	$quarterFinal2);	

$semiFinal2->addChildren($quarterFinal3,	$quarterFinal4);	

$final->addChildren($semiFinal1,	$semiFinal2);	

$tree->traverse($tree->root);	

First,	we	created	a	node	called	final	and	made	it	as	a	root	node.	Then,	we	created	two	semifinal	nodes
and	four	quarter	final	nodes.	Two	semifinal	nodes	each	have	two	quarter	final	nodes	as	left	and	right	child
nodes.	The	final	node	has	two	semifinal	nodes	as	left	and	right	child	nodes.	The	addChildren	method	is
doing	the	children	assignment	job	for	the	nodes.	In	the	last	line,	we	traversed	the	tree	and	displayed	the
data	hierarchically.	If	we	run	this	code	in	the	command	line,	we	will	see	the	following	output:

Final

-Semi	Final	1

--Quarter	Final	1

--Quarter	Final	2

-Semi	Final	2

--Quarter	Final	3

--Quarter	Final	4

Creating	a	binary	tree	using	a	PHP	array
We	can	implement	a	binary	tree	using	a	PHP	array.	Since	a	binary	tree	has	a	maximum	of	zero	to	two	child
nodes,	we	can	use	the	maximum	child	nodes	as	2	and	construct	a	formula	to	find	the	child	nodes	of	a	given
node.	Let's	number	the	nodes	in	a	binary	tree	from	top	to	bottom	and	left	to	right.	So,	the	root	node	will
have	number	0,	the	left	child	1,	and	right	child	2,	and	this	will	follow	until	each	node	is	numbered,	just
like	the	following	diagram:

We	can	easily	see	that	for	node	0,	the	left	child	is	1,	and	the	right	child	2.	For	node	1,	the	left	child	is	3,
and	the	right	child	is	4,	and	it	goes	on.	We	can	easily	put	this	in	a	formula:

If	i	is	our	node	number,	then:

Left	node	=	2	X	i	+	1

Right	node	=	2	X	(i	+	1)

Let's	now	create	our	example	for	the	match	schedule	part	using	a	PHP	array.	If	we	rank	it	as	per	our
discussion,	then	it	will	look	like	this:

$nodes	=	[];	

				$nodes[]	=	"Final";	

				$nodes[]	=	"Semi	Final	1";	

				$nodes[]	=	"Semi	Final	2";	

				$nodes[]	=	"Quarter	Final	1";	

				$nodes[]	=	"Quarter	Final	2";	

				$nodes[]	=	"Quarter	Final	3";	

				$nodes[]	=	"Quarter	Final	4";	

Basically,	we	will	create	an	array	with	auto-indexing,	starting	from	0.	This	array	will	be	used	as	a	binary
tree	representation.	Now,	we	will	modify	our	BinaryTree	class	to	use	this	array	instead	of	our	node	class,
with	left	and	right	child	nodes	as	well	as	the	traversal	method.	Now,	we	will	traverse	based	on	the	node
number	instead	of	the	actual	node	reference:

class	BinaryTree	{	

				public	$nodes	=	[];	

				public	function	__construct(Array	$nodes)	{	

						$this->nodes	=	$nodes;	

				}	

				public	function	traverse(int	$num	=	0,	int	$level	=	0)	{	

						if	(isset($this->nodes[$num]))	{	

										echo	str_repeat("-",	$level);	

										echo	$this->nodes[$num]	.	"\n";	

										$this->traverse(2	*	$num	+	1,	$level+1);	

										$this->traverse(2	*	($num	+	1),	$level+1);	

						}	

				}	

}	

As	we	can	see	from	preceding	implementation,	the	traverse	part	uses	the	node	positioning	instead	of	a
reference.	This	node	position	is	nothing	but	the	array	indexes.	So,	we	can	directly	access	the	array	index
and	check	whether	it's	empty	or	not.	If	not,	we	can	continue	to	go	deeper	using	the	recursive	way.	If	we
want	to	create	the	binary	tree	using	the	array	and	print	the	array	values,	we	have	to	write	the	following
code:

$tree	=	new	BinaryTree($nodes);	

$tree->traverse(0);	

If	we	run	this	code	in	the	command	line,	we	will	see	following	output:

Final

-Semi	Final	1

--Quarter	Final	1

--Quarter	Final	2

-Semi	Final	2

--Quarter	Final	3

--Quarter	Final	4

We	can	use	a	simple	while	loop	to	iterate	through	the	array	and	visit	each	node	instead	of
proceeding	recursively.	In	all	our	recursive	examples,	we	will	see	that	some	are	more
efficient	if	we	use	them	the	iterative	way.	We	can	also	just	use	them	directly	instead	of
creating	a	class	for	the	binary	tree.

Understanding	the	binary	search	tree
A	BST	is	a	binary	tree	that	is	built	in	such	way	that	the	tree	is	always	sorted.	This	means	the	left	child
node	has	a	value	less	than	or	equal	to	the	parent	node	value,	and	right	child	node	will	have	the	value
greater	than	the	parent	node	value.	So,	whenever	we	need	to	search	a	value,	either	we	will	search	left	or
search	right.	As	it	is	sorted,	we	have	to	search	one	part	of	the	tree,	not	both,	and	this	continues
recursively.	For	its	dividing	nature,	the	searching	becomes	very	fast,	and	we	can	achieve	logarithmic
complexity	for	the	search.	For	example,	if	we	have	n	number	of	nodes,	we	will	search	either	the	first	half
or	second	half	of	the	nodes.	Once	we	are	in	the	first	or	second	half,	we	can	divide	it	again	into	two
halves,	which	means	our	half	now	becomes	a	quarter,	and	it	goes	on	and	on	until	we	reach	the	final	node.
As	we	are	not	moving	to	each	node	to	search,	it	is	not	going	to	take	O(n)	complexity	for	the	operation.	In
the	next	chapter,	we	will	do	the	complexity	analysis	of	a	binary	search	and	will	see	why	the	binary	search
tree	has	a	search	complexity	of	O(log	n).	Unlike	the	binary	tree,	we	cannot	add	any	node	to	or	remove	any
node	from	the	tree	without	reconstructing	the	BST	properties.

If	node	X	has	two	children,	then	the	successor	of	node	X	is	the	smallest	value	that	belongs	to	the	tree,
which	is	greater	than	the	value	of	X.	In	other	words,	the	successor	is	the	minimum	value	of	the	right
subtree.	On	the	other	hand,	the	predecessor	is	the	maximum	value	of	the	left	subtree.	Now,	we	will	focus
more	on	the	different	operations	of	a	BST	and	the	steps	we	need	to	consider	to	perform	those	operations
correctly.

Here	are	the	operations	of	a	BST.

	

Inserting	a	new	node
	

When	we	are	inserting	a	new	node	in	the	binary	search	tree,	we	have	to	consider	the	following	steps:

1.	 Create	a	new	node	as	a	leaf	(no	left	child	or	right	child).
2.	 Start	with	the	root	node	and	set	it	as	the	current	node.
3.	 If	the	node	is	empty,	make	the	new	node	as	the	root.
4.	 Check	whether	the	new	value	is	less	than	the	current	node	or	more.
5.	 If	less,	go	to	the	left	and	set	the	left	as	the	current	node.
6.	 If	more,	go	to	the	right	and	set	the	right	as	the	current	node.
7.	 Continue	to	step	3	until	all	the	nodes	are	visited	and	the	new	node	is	set.

	

	

Searching	a	node
	

When	we	are	searching	a	new	node	in	a	binary	search	tree,	we	have	to	consider	the	following	steps:

1.	 Start	with	the	root	node	and	set	it	as	the	current	node.
2.	 If	the	current	node	is	empty,	return	false.
3.	 If	the	current	node	value	is	the	search	value,	return	true.
4.	 Check	whether	the	searching	value	is	less	than	the	current	node	or	more.
5.	 If	less,	go	to	the	left	and	set	the	left	as	the	current	node.
6.	 If	more,	go	to	the	right	and	set	the	right	as	the	current	node.
7.	 Continue	to	step	3	until	all	the	nodes	are	visited.

	

	

Finding	the	minimum	value
	

As	a	binary	search	tree	stores	data	in	a	sorted	way,	we	can	always	find	the	smaller	data	in	the	left	nodes
and	the	bigger	ones	in	the	right	node.	So,	finding	the	minimum	value	will	require	us	to	visit	all	the	left
nodes	from	the	root	node	until	we	find	the	left-most	node	and	its	value.	Here	are	the	steps	for	finding	the
minimum	value:

1.	 Start	with	the	root	node	and	set	it	as	the	current	node.
2.	 If	the	current	node	is	empty,	return	false.
3.	 Go	to	the	left	and	set	the	left	as	the	current	node.
4.	 If	the	current	node	does	not	have	a	left	node,	go	to	step	5;	otherwise,	continue	to	step	4.
5.	 Continue	to	step	3	until	all	the	left	nodes	are	visited.
6.	 Return	the	current	node.

	

	

Finding	the	maximum	value
	

Here	are	the	steps	for	finding	the	maximum	value:

1.	 Start	with	the	root	node	and	set	it	as	the	current	node.
2.	 If	the	current	node	is	empty,	return	false.
3.	 Go	to	the	right	and	set	the	right	as	the	current	node.
4.	 If	the	current	node	does	not	have	a	right	node,	go	to	step	5;	otherwise,	continue	to	step	4.
5.	 Continue	to	step	3	until	all	the	right	nodes	are	visited.
6.	 Return	the	current	node.

	

	

Deleting	a	node
	

When	we	are	deleting	a	node,	we	have	to	consider	that	the	node	can	be	an	internal	node	or	a	leaf.	If	it's	a
leaf,	it	has	zero	children.	However,	if	the	node	is	internal,	it	can	have	one	or	two	children.	In	such	a	case,
we	need	to	take	extra	steps	to	make	sure	the	tree	is	constructed	right	after	the	deletion.	That	is	why
deleting	a	node	from	BST	is	always	a	challenging	job	compared	to	other	operations.	Here	are	the	things
to	consider	for	a	node	deletion:

1.	 If	the	node	has	no	child,	make	the	node	NULL.
2.	 If	the	node	has	only	one	child,	make	the	child	take	node's	place.
3.	 If	the	node	has	two	children,	then	find	the	successor	of	the	node	and	replace	it	to	the	current	node's

place.	Remove	the	successor	node.

We	have	discussed	most	of	the	possible	operations	for	a	binary	search	tree.	Now,	we	will	implement	the
binary	search	tree	step-by-step,	starting	with	insert,	search,	finding	minimum	and	maximum,	and	at	the
end,	the	delete	operation.	Let's	get	started	with	the	implementations.

	

	

Constructing	a	binary	search	tree
As	we	know,	a	node	can	have	two	children	and	itself	can	represent	a	tree	in	a	recursive	manner.	We	will
define	our	node	class	to	be	more	functional	and	have	all	the	required	functionalities	to	find	the	maximum
value,	minimum	value,	predecessors,	and	successors.	Later	on,	we	will	add	the	delete	functionality	as
well	for	a	node.	Let's	check	the	following	code	for	a	node	class	for	a	BST:

class	Node	{	

				public	$data;	

				public	$left;	

				public	$right;	

				public	function	__construct(int	$data	=	NULL)	{	

							$this->data	=	$data;	

							$this->left	=	NULL;	

							$this->right	=	NULL;	

				}	

				public	function	min()	{	

							$node	=	$this;	

							while($node->left)	{	

									$node	=	$node->left;	

							}	

									return	$node;	

				}	

				public	function	max()	{	

									$node	=	$this;	

									while($node->right)	{	

												$node	=	$node->right;	

									}	

									return	$node;	

				}	

				public	function	successor()	{	

									$node	=	$this;	

									if($node->right)	

															return	$node->right->min();	

									else	

															return	NULL;	

				}	

				public	function	predecessor()	{	

									$node	=	$this;	

									if($node->left)	

															return	$node->left->max();	

									else	

															return	NULL;

				}

}

The	node	class	looks	straightforward	and	matches	with	our	steps	defined	in	the	previous	section.	Each
new	node	is	a	leaf	and	hence,	does	not	have	a	left	or	right	node	at	the	moment	of	creation.	As	we	know
that	we	can	find	the	smaller	value	at	the	left	of	the	node	to	find	the	minimum,	we	are	reaching	to	the	left-
most	node	and	right-most	node	for	the	maximum	value.	For	a	successor,	we	are	finding	the	minimum	value
of	a	node	from	the	right	subtree	of	a	given	node	and	the	maximum	value	of	a	node	from	the	left	subtree	for
the	predecessor	part.

Now,	we	need	a	BST	structure	to	add	new	nodes	in	the	tree	so	that	we	can	follow	the	insert	principle:

class	BST	{	

				public	$root	=	NULL;	

				public	function	__construct(int	$data)	{	

									$this->root	=	new	Node($data);	

				}	

				public	function	isEmpty():	bool	{	

									return	$this->root	===	NULL;	

				}	

				public	function	insert(int	$data)	{	

									if($this->isEmpty())	{	

															$node	=	new	Node($data);	

															$this->root	=	$node;	

															return	$node;	

									}		

				$node	=	$this->root;	

				while($node)	{	

						if($data	>	$node->data)	{	

										if($node->right)	{	

												$node	=	$node->right;	

										}	else	{	

												$node->right	=	new	Node($data);	

												$node	=	$node->right;	

												break;	

										}	

						}	elseif($data	<	$node->data)	{	

										if($node->left)	{	

												$node	=	$node->left;	

										}	else	{	

												$node->left	=	new	Node($data);	

												$node	=	$node->left;	

												break;	

										}	

						}	else	{	

												break;	

						}	

				}	

				return	$node;	

				}	

				public	function	traverse(Node	$node)	{	

						if	($node)	{	

										if	($node->left)	

												$this->traverse($node->left);	

										echo	$node->data	.	"\n";	

										if	($node->right)

												$this->traverse($node->right);

						}

				}

}

If	we	look	at	the	preceding	code,	we	have	only	one	property	for	the	BST	class,	which	will	mark	the	root
node.	During	the	construction	of	the	BST	object,	we	are	passing	a	single	value,	which	will	be	used	as	the
root	of	the	tree.	The	isEmpty	method	checks	whether	the	tree	is	empty	or	not.	The	insert	method	allows	us	to
add	a	new	node	in	the	tree.	The	logic	checks	whether	the	value	is	greater	than	or	less	than	the	root	node
and	follows	the	principle	of	the	BST	to	insert	the	new	node	in	the	right	position.	If	the	value	is	already
inserted,	we	will	ignore	it	and	avoid	adding	to	the	tree.

We	also	have	a	traverse	method	to	go	through	the	nodes	and	see	the	data	in	an	ordered	format	(first	left,
then	the	node,	and	then	the	right	node	value).	It	has	a	designated	name,	and	we	will	explore	that	in	the	next
section.	For	now,	let's	prepare	a	sample	code	to	use	the	BST	class	and	add	a	few	numbers	and	check

whether	the	numbers	are	stored	in	a	proper	way.	If	the	BST	is	working,	then	the	traverse	will	show	a
sorted	list	of	numbers,	no	matter	how	we	insert	them:

$tree	=	new	BST(10);	

$tree->insert(12);	

$tree->insert(6);	

$tree->insert(3);	

$tree->insert(8);	

$tree->insert(15);	

$tree->insert(13);	

$tree->insert(36);	

$tree->traverse($tree->root);

If	we	look	at	the	preceding	code,	10	is	our	root	node,	and	then,	we	added	new	nodes	randomly.	At	the	end,
we	invoked	the	traverse	method	to	show	the	nodes	and	how	they	are	stored	in	the	binary	search	tree.	Here
is	the	output	of	the	preceding	code:

3

6

8

10

12

13

15

36

The	actual	tree	will	look	like	this	visually,	which	looks	exactly	like	what	is	expected	from	the	BST
implementation:

Now,	we	will	add	the	search	part	in	our	BST	class.	We	want	to	find	whether	the	value	exists	in	the	tree	or
not.	If	the	value	is	not	in	our	BST,	it	will	return	false	and	the	node	otherwise.	Here	is	the	simple	search
functionality:

public	function	search(int	$data)	{	

		if	($this->isEmpty())	{	

						return	FALSE;	

		}	

		$node	=	$this->root;	

		while	($node)	{	

						if	($data	>	$node->data)	{	

								$node	=	$node->right;	

						}	elseif	($data	<	$node->data)	{	

								$node	=	$node->left;	

						}	else	{	

								break;	

						}	

		}	

		return	$node;	

}

In	the	preceding	code,	we	can	see	that	we	are	searching	a	value	in	the	tree	from	the	node	and	following
either	left	or	right	of	the	tree	iteratively.	If	no	node	is	found	with	the	value,	the	leaf	of	the	node	is	returned,
which	is	NULL.	We	can	test	the	code	like	this:

echo	$tree->search(14)	?	"Found"	:	"Not	Found";

echo	"\n";

echo	$tree->search(36)	?	"Found"	:	"Not	Found";

This	will	produce	the	following	output.	Since	14	is	not	in	our	list,	it	will	say	Not	Found,	and	for	36,	it	will
show	Found:

Not	Found

Found

Now,	we	will	move	to	our	most	complex	part	of	the	coding,	the	deletion	of	a	node.	We	need	to	implement
each	of	the	cases	where	a	node	can	have	zero,	one,	or	two	child	nodes.	The	following	image	shows	us	the
three	conditions	we	need	to	satisfy	for	deleting	a	node	and	making	sure	the	binary	search	tree	remains	a
binary	search	tree	after	the	operation.	We	have	to	be	careful	when	we	are	dealing	with	a	node	that	has	two
child	nodes.	Since	we	need	to	go	back	and	forth	between	nodes,	we	need	to	know	which	node	is	the
parent	node	for	the	current	node.	As	a	result,	we	need	to	add	an	additional	property	to	track	the	parent
node	for	any	node:

Here	is	the	change	of	code	we	are	adding	to	our	Node	class:

public	$data;

				public	$left;

				public	$right;

				public	$parent;

				public	function	__construct(int	$data	=	NULL,	Node	$parent	=	NULL)			

					{

						$this->data	=	$data;	

						$this->parent	=	$parent;	

						$this->left	=	NULL;	

						$this->right	=	NULL;	

					}

This	code	block	now	also	creates	a	parent	relationship	with	the	newly	created	node	to	its	immediate
parent.	We	also	want	to	attach	our	delete	functionality	with	the	individual	node	so	that	we	can	find	a	node
and	then	just	remove	it	using	the	delete	method.	Here	is	the	code	for	the	delete	functionality:

public	function	delete()	{	

				$node	=	$this;	

				if	(!$node->left	&&	!$node->right)	{	

								if	($node->parent->left	===	$node)	{	

										$node->parent->left	=	NULL;	

								}	else	{	

										$node->parent->right	=	NULL;	

								}	

				}	elseif	($node->left	&&	$node->right)	{	

								$successor	=	$node->successor();	

								$node->data	=	$successor->data;	

								$successor->delete();	

				}	elseif	($node->left)	{	

								if	($node->parent->left	===	$node)	{	

										$node->parent->left	=	$node->left;	

										$node->left->parent	=	$node->parent->left;	

								}	else	{	

										$node->parent->right	=	$node->left;	

										$node->left->parent	=	$node->parent->right;	

								}	

								$node->left	=	NULL;	

				}	elseif	($node->right)	{	

								if	($node->parent->left	===	$node)	{	

										$node->parent->left	=	$node->right;	

										$node->right->parent	=	$node->parent->left;	

								}	else	{	

										$node->parent->right	=	$node->right;	

										$node->right->parent	=	$node->parent->right;	

								}	

								$node->right	=	NULL;	

				}

}

The	first	condition	checks	whether	the	node	is	a	leaf	or	not.	If	the	node	is	a	leaf,	then	we	are	just	making
the	parent	node	to	remove	the	reference	of	the	child	node	(either	the	left	or	right	one).	That	way,	the	node
will	be	disconnected	from	the	tree,	which	satisfies	our	first	condition	of	having	zero	children.

The	next	conditions	actually	checks	our	third	condition	where	we	are	having	two	children	of	a	node.	In
such	a	case,	we	are	getting	the	successor	of	the	node,	assigning	the	successor	value	to	the	node	itself,	and
removing	the	successor	node.	It	is	simply	a	copy-paste	of	the	data	from	the	successor.

The	next	two	condition	check	whether	the	node	has	a	single	child,	as	shown	in	our	Case	2	diagram
earlier.	Since	the	node	has	only	one	child,	it	can	be	either	the	left	child	or	the	right	child.	So,	the	condition
checks	whether	the	single	child	is	the	left	child	of	the	node.	If	so,	we	need	to	point	the	left	child	to	the
node's	parent	left	or	right	reference	based	on	the	position	of	the	node	itself	with	its	parent.	The	same	rule
is	applied	for	the	right	node.	Here,	the	right	node	reference	is	set	to	its	parent's	left	or	right	child,	not	to	a
reference	based	on	the	position	of	the	node.

As	we	have	updated	our	node	class,	we	need	to	make	some	changes	to	our	BST	class	for	insertion	and
also	for	removal	of	a	node.	The	insertion	code	will	look	like	this:

function	insert(int	$data)

	{

				if	($this->isEmpty())	{

										$node	=	new	Node($data);

										$this->root	=	$node;

										return	$node;

				}

				$node	=	$this->root;

				while	($node)	{

										if	($data	>	$node->data)	{

																if	($node->right)	{

																						$node	=	$node->right;

																}

																else	{

																						$node->right	=	new	Node($data,	$node);

																						$node	=	$node->right;

																						break;

																}

										}

										elseif	($data	<	$node->data)	{

																if	($node->left)	{

																						$node	=	$node->left;

																}

																else	{

																						$node->left	=	new	Node($data,	$node);

																						$node	=	$node->left;

																						break;

																}

										}

										else	{

																break;

				}

	}

				return	$node;

	}

The	code	looks	similar	to	the	one	we	used	previously,	with	one	minor	change.	Now,	we	are	sending	the
current	node	reference	when	we	are	creating	a	new	node.	This	current	node	will	be	used	as	a	parent	node
for	the	new	node.	The	new	Node($data,	$node)	code	actually	does	the	trick.

For	removing	a	node,	we	can	first	do	a	search	and	then	delete	the	searched	node	using	our	delete	method
in	the	node	class.	As	a	result,	the	remove	function	itself	is	going	to	be	very	small,	just	like	the	code	here:

public	function	remove(int	$data)	{

				$node	=	$this->search($data);

				if	($node)	$node->delete();

	}

As	the	code	shows,	we	are	first	searching	the	data.	If	the	node	exists,	we	are	removing	it	using	the	delete
method.	Now,	let's	run	our	previous	example	with	a	remove	call	and	see	if	it	works:

$tree->remove(15);

			$tree->traverse($tree->root);

We	are	just	removing	15	from	our	tree	and	then	traversing	the	tree	from	the	root.	We	will	now	see	the
following	output:

3

6

8

10

12

13

36

We	can	see	that	15	is	not	a	part	of	our	BST	anymore.	In	such	a	way,	we	can	remove	any	node,	and	if	we
traverse	using	the	same	method,	we	will	see	a	sorted	list.	If	we	look	at	our	preceding	output,	we	can	see
that	the	output	is	shown	in	the	ascending	order.	There	is	a	reason	behind	it,	and	we	will	explore	it	in	the
next	topic-different	tree	traversal	way.

You	can	find	a	great	tool	for	visualized	binary	search	tree	operations	at	http://btv.melezinek.cz/
binary-search-tree.html.	It	is	a	good	starting	for	learners	to	understand	the	different
operations	visually.

http://btv.melezinek.cz/binary-search-tree.html

	

Tree	traversal
	

Tree	traversal	refers	to	the	way	we	visit	each	node	in	a	given	tree.	Based	on	how	we	do	the	traversing,
we	can	follow	three	different	ways	of	traversing.	These	traversals	are	very	important	in	many	different
ways.	Polish	notation	conversion	for	expression	evaluation	is	one	of	the	most	popular	examples	of	using
tree	traversals.

	

	

	

In-order
	

In-order	tree	traversal	visits	the	left	node	first,	then	the	root	node,	and	followed	by	the	right	node.	This
continues	recursively	for	each	node.	The	left	node	stores	a	smaller	value	compared	to	the	root	node	value
and	right	node	stores	a	bigger	value	than	the	root	node.	As	a	result,	when	we	are	applying	in-order
traversing,	we	are	obtaining	a	sorted	list.	That	is	why,	so	far,	our	binary	tree	traversal	was	showing	a
sorted	list	of	numbers.	That	traversal	part	is	actually	the	example	of	an	in-order	tree	traversal.	The	in-
order	tree	traversal	follows	these	principles:

1.	 Traverse	the	left	subtree	by	recursively	calling	the	in-order	function.
2.	 Display	the	data	part	of	the	root	(or	current	node).

3.	 Traverse	the	right	subtree	by	recursively	calling	the	in-order	function.

The	preceding	tree	will	show	A,	B,	C,	D,	E,	F,	G,	H,	and	I	as	output	since	it	is	being	traversed	in-order.

	

	

	

Pre-order
	

In	pre-order	traversal,	the	root	node	is	visited	first,	followed	by	the	left	node	and	then	the	right	node.	The
principles	of	pre-order	traversal	are	as	follows:

1.	 Display	the	data	part	of	the	root	(or	current	node).
2.	 Traverse	the	left	subtree	by	recursively	calling	the	pre-order	function.
3.	 Traverse	the	right	subtree	by	recursively	calling	the	pre-order	function.

The	preceding	tree	will	have	F,	B,	A,	D,	C,	E,	G,	I,	and	H	as	output	as	it	is	being	traversed	in	pre-order.

	

	

Post-order
In	post-order	traversal,	the	root	node	is	visited	last.	The	first	left	node	is	visited	and	then	the	right	node.
The	principles	of	post-order	traversal	are	as	follows:

1.	 Traverse	the	left	subtree	by	recursively	calling	the	post-order	function.
2.	 Traverse	the	right	subtree	by	recursively	calling	the	post-order	function.
3.	 Display	the	data	part	of	the	root	(or	current	node).

The	preceding	tree	will	have	the	output	A,	C,	E,	D,	B,	H,	I,	G,	and	F	since	it	is	traversed	in	a	post-order
way.

Now,	let's	implement	the	traversal	logic	in	our	BST	class:

public	function	traverse(Node	$node,	string	$type="in-order")	{	

switch($type)	{								

				case	"in-order":	

						$this->inOrder($node);	

				break;	

				case	"pre-order":	

						$this->preOrder($node);	

				break;	

				case	"post-order":	

						$this->postOrder($node);	

				break;							

}						

}	

public	function	preOrder(Node	$node)	{	

		if	($node)	{	

						echo	$node->data	.	"	";	

						if	($node->left)	$this->traverse($node->left);	

						if	($node->right)	$this->traverse($node->right);	

		}						

}	

public	function	inOrder(Node	$node)	{	

		if	($node)	{											

						if	($node->left)	$this->traverse($node->left);	

						echo	$node->data	.	"	";	

						if	($node->right)	$this->traverse($node->right);	

		}	

}	

public	function	postOrder(Node	$node)	{	

		if	($node)	{											

						if	($node->left)	$this->traverse($node->left);	

						if	($node->right)	$this->traverse($node->right);	

						echo	$node->data	.	"	";	

		}	

}	

Now,	if	we	run	the	three	different	traversal	methods	for	our	previous	binary	search	tree,	here	is	the	code
to	run	the	traversal	part:

$tree->traverse($tree->root,	'pre-order');

			echo	"\n";

			$tree->traverse($tree->root,	'in-order');

			echo	"\n";

			$tree->traverse($tree->root,	'post-order');

This	will	produce	the	following	output	in	our	command	line:

10	3	6	8	12	13	15	36

3	6	8	10	12	13	15	36

3	6	8	12	13	15	36	10

Complexity	of	different	tree	data	structures
So	far,	we	have	seen	different	tree	types	and	their	operations.	It	is	not	possible	to	go	through	each	of	the
tree	types	and	their	different	operations,	as	this	will	be	out	of	the	scope	of	the	book.	We	want	to	get	the
minimal	idea	about	the	other	tree	structures	and	their	operation	complexities.	Here	is	a	chart	with	average
and	worst	case	complexities	of	different	operations	and	spaces	for	different	types	of	trees.	We	might	need
to	choose	different	tree	structures	based	on	our	requirements:	

	

Summary
	

In	this	chapter,	we	discussed	the	non-linear	data	structure	in	detail.	You	learned	that	trees	are	hierarchical
data	structures	and	that	there	are	different	tree	types,	operations,	and	complexities.	We	have	also	seen
how	to	define	a	binary	search	tree.	This	will	be	very	useful	for	implementing	different	searching
techniques	and	data	storage.	In	our	next	chapter,	we	will	shift	our	focus	from	data	structures	to	algorithms.
We	will	focus	on	the	first	type	of	algorithm--the	sorting	algorithms.

	

	

	

Using	Sorting	Algorithms
	

Sorting	is	one	of	the	most	used	algorithms	in	computer	programming.	Even	in	our	everyday	life,	if	things
are	not	sorted,	we	can	have	a	hard	time	with	them.	Sorting	can	pave	the	way	for	faster	searching	or
ordering	of	items	in	a	collection.	Sorting	can	be	done	in	many	different	ways,	such	as	in	ascending	order
or	descending	order.	Sorting	can	also	be	based	on	the	type	of	data.	For	example,	sorting	a	collection	of
names	will	require	lexicographical	sorting	rather	than	numerical	sorting.	As	sorting	can	play	an	important
role	for	other	data	structures	and	their	efficiencies,	there	are	many	different	sorting	algorithms	available.
We	will	explore	a	few	of	the	most	popular	sorting	algorithms	in	this	chapter,	along	with	their	complexity
and	usages.

	

	

	

Understanding	sorting	and	their	types
	

Sorting	means	a	sorted	order	of	the	data.	Often,	our	data	is	unsorted,	which	means	we	need	a	way	to	sort
it.	Usually,	sorting	is	done	by	comparing	different	elements	with	each	other	and	coming	up	with	the
ranking.	In	most	cases,	without	the	comparison,	we	cannot	decide	on	the	sorting	part.	After	the
comparison,	we	also	need	to	swap	the	elements	so	that	we	can	reorder	them.	A	good	sorting	algorithm	has
the	characteristics	of	making	a	minimum	number	of	comparisons	and	swapping.	There	is	also	non-
comparison	based	sorting,	where	no	comparison	is	required	to	sort	a	list	of	items.	We	will	also	explore
those	algorithms	in	this	chapter.

Sorting	can	be	classified	into	different	types	based	on	the	type	of	data	set,	direction,	computational
complexities,	memory	usage,	space	usage,	and	so	on.	Here	are	few	of	the	sorting	algorithms	we	will
explore	in	this	chapter:

Bubble	sort
Insertion	sort
Selection	sort
Quick	sort
Merge	sort
Bucket	sort

We	will	keep	our	discussion	limited	to	the	preceding	list,	as	they	are	the	most	commonly	used	sorting
algorithms	and	can	be	grouped	and	classified	under	different	criteria	such	as	simple	sorting,	efficient
sorting,	distribution	sorting,	and	so	on.	We	will	now	explore	each	of	the	sorting	functionalities,	their
implementations,	and	complexity	analysis,	along	with	their	pros	and	cons.	Let's	get	started	with	the	most
commonly	used	sorting	algorithm	-	bubble	sort.

	

	

Understanding	bubble	sort
Bubble	sort	is	the	most	commonly	used	sorting	algorithm	in	the	programming	world.	Most	of	the
programmers	start	learning	about	sorting	with	this	algorithm.	It	is	a	comparison-based	sorting	algorithm,
which	is	always	referred	to	as	one	of	the	most	inefficient	sorting	algorithms.	It	requires	maximum	number
of	comparisons,	and	the	average,	and	worst	case	complexity	are	the	same.

In	bubble	sort,	each	item	of	the	list	is	compared	with	the	rest	of	the	items	and	swapped	if	required.	This
continues	for	each	item	in	the	list.	We	can	sort	either	in	ascending	or	descending	order.	Here	is	the	pseudo
algorithm	for	bubble	sort:

procedure	bubbleSort(A	:	list	of	sortable	items)	

			n	=	length(A)	

			for	i	=	0	to	n	inclusive	do		

					for	j	=	0	to	n-1	inclusive	do	

							if	A[j]	>	A[j+1]	then	

									swap(A[j],	A[j+1])	

							end	if	

					end	for	

			end	for	

end	procedure

As	we	can	see	from	the	preceding	pseudocode,	we	are	running	one	loop	to	ensure	that	we	iterate	each
item	of	the	list.	The	inner	loop	ensures	that,	once	we	point	to	an	item,	we	are	comparing	the	item	with
other	items	in	the	list.	Based	on	our	preference,	we	can	swap	the	two	items.	The	following	image	shows	a
single	iteration	to	sort	one	item	of	the	list.	Let's	assume	our	list	has	the	following	items:	20,	45,	93,	67,
10,	97,	52,	88,	33,	92.	For	the	first	pass	(iteration)	to	sort	out	the	first	item,	the	following	steps	will	be
taken:

If	we	check	the	preceding	image,	we	can	see	that	we	are	comparing	two	numbers	and	then	deciding
whether	we	are	going	to	swap/exchange	the	item.	The	items	with	background	color	shows	the	two	items
we	are	comparing.	As	we	can	see,	the	first	iteration	of	the	outer	loop	causes	the	topmost	items	to	be
stored	in	the	topmost	places	in	the	list.	This	will	continue	until	we	iterate	through	each	of	the	items	in	the
list.

Let's	now	implement	the	bubble	sort	algorithm	using	PHP.

Implementing	bubble	sort	using	PHP
Since	we	are	assuming	the	unsorted	number	will	be	in	a	list,	we	can	use	a	PHP	array	to	represent	the	list
of	unsorted	numbers.	Since	the	array	has	both	index	and	values,	we	can	utilize	the	array	to	easily	iterate
through	each	item,	based	on	position,	and	swap	them	where	it	is	applicable.	The	code	will	look	like	this,
based	on	our	pseudocodes:

function	bubbleSort(array	$arr):	array	{	

				$len	=	count($arr);	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						for	($j	=	0;	$j	<	$len	-	1;	$j++)	{	

										if	($arr[$j]	>	$arr[$j	+	1])	{	

												$tmp	=	$arr[$j	+	1];	

												$arr[$j	+	1]	=	$arr[$j];	

												$arr[$j]	=	$tmp;	

										}	

						}	

				}					

				return	$arr;	

}

As	we	can	see,	we	are	using	two	for	loops	to	iterate	each	item	and	comparing	with	the	rest	of	the	items.
The	swapping	is	done	in	the	lines:

$tmp	=	$arr[$j	+	1];

$arr[$j	+	1]	=	$arr[$j];

$arr[$j]	=	$tmp;

First,	we	assigned	the	second	value	to	a	temporary	variable	named	$tmp.	Then,	we	assigned	the	first	value
to	the	second	value	and	reassigned	the	temporary	value	to	the	first	value.	This	is	known	as	swapping	two
variables	using	a	third	or	temporary	variable.

We	are	only	swapping	if	the	first	value	is	greater	than	the	second	value.	Else,	we	are	just	ignoring.	The
comment	on	the	right-hand	side	of	the	image	shows	whether	an	exchange	occurred	or	not.	If	we	want	to
sort	it	in	a	descending	order	(bigger	number	first),	then	we	can	just	modify	the	if	condition	as	follows:

if	($arr[$j]	<	$arr[$j	+	1])	{

}

Now,	let's	run	the	code	as	follows:

$arr	=	[20,	45,	93,	67,	10,	97,	52,	88,	33,	92];	

$sortedArray	=	bubbleSort($arr);	

echo	implode(",",	$sortedArray);	

This	will	produce	the	following	output:

10,20,33,45,52,67,88,92,93,97

So,	we	can	see	that	the	array	is	sorted	using	the	bubble	sort	algorithm.	Now,	let's	discuss	the	complexity
of	the	algorithm.

Complexity	of	bubble	sort
For	the	first	pass,	in	the	worst	case,	we	have	to	do	n-1	comparison	and	swapping.	For	the	n-1th	pass,	in
the	worst	case,	we	have	to	do	only	one	comparison	and	swapping.	So,	if	we	write	it	step	by	step	then	we
will	see:	Complexity	=	n	-	1	+	n	-	2	+	+	2	+	1	=	n	*	(n	-	1)/2	=	O(n2)

Thus,	the	complexity	of	bubble	sort	is	O(n2).	However,	there	is	some	constant	time	required	to	assign	a
temporary	variable,	swapping,	go	through	inner	loops,	and	so	on.	We	can	ignore	them	since	they	are
constant.

Here	is	the	time	complexity	table	for	bubble	sort,	for	best,	average,	and	worst	case	scenarios:

Best	time	complexity Ω(n)

Worst	time	complexity O(n2)

Average	time	complexity Θ(n2)

Space	complexity	(worst	case) O(1)

Though	the	time	complexity	is	O(n2)	for	bubble	sort,	we	can	still	apply	some	improvements	to	reduce	the
number	of	comparison	and	swaps.	Let's	now	explore	those	options.	The	best	time	is	Ω(n)	since	we	need	at
least	one	inner	loop	to	run	to	find	out	that	the	array	is	already	sorted.

Improving	bubble	sort	algorithm
One	of	the	most	important	aspects	of	bubble	sort	is	that,	for	each	iteration	in	the	outer	loop,	there	will	be
at	least	one	swapping.	If	there	is	no	swapping,	then	the	list	is	already	sorted.	We	can	utilize	this
improvement	in	our	pseudocode	and	redefine	it	like	this:

procedure	bubbleSort(A	:	list	of	sortable	items)	

			n	=	length(A)	

			for	i	=	1	to	n	inclusive	do		

					swapped	=	false	

					for	j	=	1	to	n-1	inclusive	do	

							if	A[j]	>	A[j+1]	then	

									swap(A[j],	A[j+1])	

									swapped	=	true	

							end	if	

					end	for	

					if	swapped	is	false	

								break	

					end	if	

			end	for	

end	procedure

As	we	can	see	that	we	now	have	a	flag	set	for	each	iteration	to	be	false,	and	we	are	expecting	that,	inside
the	inner	iteration,	the	flag	will	be	set	to	true.	If	the	flag	is	still	false	after	the	inner	loop	is	done,	then	we
can	break	the	loop	so	that	we	can	mark	the	list	as	sorted.	Here	is	the	implementation	of	the	improved
version	of	the	algorithm:

function	bubbleSort(array	$arr):	array	{	

				$len	=	count($arr);	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						$swapped	=	FALSE;	

						for	($j	=	0;	$j	<	$len	-	1;	$j++)	{	

										if	($arr[$j]	>	$arr[$j	+	1])	{	

												$tmp	=	$arr[$j	+	1];	

												$arr[$j	+	1]	=	$arr[$j];	

												$arr[$j]	=	$tmp;	

												$swapped	=	TRUE;	

										}	

						}	

									if(!	$swapped)	break;	

				}					

				return	$arr;	

}	

Another	observation	is	that,	in	the	first	iteration,	the	top	item	is	placed	to	the	right	of	the	array.	In	the
second	loop,	the	second	top	item	will	be	in	the	second	to	the	right	of	the	array.	If	we	can	visualize	that
after	each	iteration,	the	ith	cell	has	already	stored	the	sorted	items,	there	is	no	need	to	visit	that	index	and
do	a	comparison.	As	a	result,	we	can	reduce	the	outer	iteration	number	from	the	inner	iteration	and	reduce
the	comparisons	by	a	good	margin.	Here	is	the	pseudocode	for	the	second	improvement	we	are
proposing:

procedure	bubbleSort(A	:	list	of	sortable	items)	

			n	=	length(A)	

			for	i	=	1	to	n	inclusive	do		

					swapped	=	false	

					for	j	=	1	to	n-i-1	inclusive	do	

							if	A[j]	>	A[j+1]	then	

									swap(A[j],	A[j+1])	

									swapped	=	true	

							end	if	

					end	for	

					if	swapped	is	false	

								break	

					end	if	

			end	for	

end	procedure	

Now,	let's	implement	the	final	improved	version	with	PHP:

function	bubbleSort(array	$arr):	array	{

				$len	=	count($arr);	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						$swapped	=	FALSE;	

						for	($j	=	0;	$j	<	$len	-	$i	-	1;	$j++)	{	

										if	($arr[$j]	>	$arr[$j	+	1])	{	

												$tmp	=	$arr[$j	+	1];	

												$arr[$j	+	1]	=	$arr[$j];	

												$arr[$j]	=	$tmp;	

												$swapped	=	TRUE;	

										}	

						}	

						if(!	$swapped)	break;	

				}					

				return	$arr;	

}	

If	we	look	at	the	inner	loop	in	the	preceding	code,	the	only	difference	is	$j	<	$len	-	$i	-	1;	other	parts	are
the	same	as	the	first	improvement.	So,	basically,	for	our	20,	45,	93,	67,	10,	97,	52,	88,	33,	92	list,	we	can
easily	say	that	after	the	first	iteration,	the	top	number	97	will	not	be	considered	for	second	iteration
comparison.	The	same	goes	for	93,	which	will	not	be	considered	for	the	third	iteration,	just	like	the
following	image:

If	we	look	at	the	preceding	image,	the	immediate	question	that	strikes	our	mind	is	"Isn't	92	already	sorted?
Do	we	need	to	again	compare	all	numbers	and	mark	that	92	is	already	sorted	in	its	place?"	Yes,	we	are
right.	It	is	a	valid	question.	This	means	that	we	can	know,	in	which	position	we	did	the	last	swap	in	the
inner	loop;	after	that,	the	array	is	already	sorted.	So,	we	can	set	a	bound	for	the	next	loop	to	go,	until	then,
and	only	compare	until	the	boundary	we	set.	Here	is	the	pseudocode	for	this:

procedure	bubbleSort(A	:	list	of	sortable	items)

			n	=	length(A)

			bound	=	n	-1

			for	i	=	1	to	n	inclusive	do

					swapped	=	false

					newbound	=	0

					for	j	=	1	to	bound	inclusive	do

							if	A[j]	>	A[j+1]	then

									swap(A[j],	A[j+1])

												swapped	=	true

												newbound	=	j

							end	if

					end	for

					bound	=	newbound

					if	swapped	is	false

								break

					end	if

			end	for

end	procedure

Here,	we	are	setting	the	bound	after	completion	of	each	inner	loop	and	making	sure	we	are	not	iterating
unnecessarily.	Here	is	the	actual	PHP	code	using	the	preceding	pseudocode:

function	bubbleSort(array	$arr):	array	{

				$len	=	count($arr);

				$count	=	0;

				$bound	=	$len-1;

				for	($i	=	0;	$i	<	$len;	$i++)	{

					$swapped	=	FALSE;

					$newBound	=	0;

						for	($j	=	0;	$j	<	$bound;	$j++)	{

										$count++;

										if	($arr[$j]	>	$arr[$j	+	1])	{

												$tmp	=	$arr[$j	+	1];

												$arr[$j	+	1]	=	$arr[$j];

												$arr[$j]	=	$tmp;

												$swapped	=	TRUE;

												$newBound	=	$j;

										}

						}

					$bound	=	$newBound;

					if(!	$swapped)	break;

				}

				echo	$count."\n";

				return	$arr;

}

We	have	seen	different	variations	of	bubble	sort	implementations,	but	the	output	will	always	be	the	same:
10,	20,	33,	45,	52,	67,	88,	92,	93,	97.	If	this	is	the	case,	then	how	can	we	be	sure	that	our	improvements
have	actually	had	some	impact	on	the	algorithm?	Here	are	some	statistics	on	the	number	of	comparisons
for	all	four	implementations	for	our	initial	list	20,	45,	93,	67,	10,	97,	52,	88,	33,	92:

Solution Comparison	count

Regular	bubble	sort 90

After	first	improvement 63

After	second	improvement 42

After	third	improvement 38

As	we	can	see,	we	have	reduced	the	number	of	comparisons	from	90	to	38	with	our	improvement.	So,	we
can	certainly	boost	up	the	algorithm	with	some	improvements	to	reduce	the	number	of	comparisons

required.

Understanding	selection	sort
Selection	sort	is	another	comparison-based	sorting	algorithm,	which	looks	similar	to	bubble	sort.	The
biggest	difference	is	that	it	takes	fewer	swapping	than	bubble	sort.	In	selection	sort,	we	first	find	the
minimum/maximum	item	of	the	array	and	place	it	in	the	first	place.	If	we	are	sorting	in	descending	order,
then	we	will	take	the	maximum	value	from	the	array.	For	ascending	order,	we	will	take	the	minimum
value.	In	the	second	iteration,	we	will	find	the	second-most	maximum	or	minimum	value	of	the	array	and
place	it	in	second	place.	This	goes	on	until	we	place	each	number	into	a	correctly	sorted	position.	This	is
known	as	selection	sort.	The	pseudocode	for	selection	sort	looks	like	this:

procedure	selectionSort(A	:	list	of	sortable	items)

			n	=	length(A)

			for	i	=	1	to	n	inclusive	do

					min	=	i

					for	j	=	i+1	to	n	inclusive	do

							if	A[j]	<	A[min]	then

									min	=	j

							end	if

					end	for

					if	min	!=	i

								swap(a[i],a[min])

					end	if

			end	for

end	procedure

If	we	look	at	the	preceding	algorithm,	we	can	see	that,	after	iteration	one	in	the	outer	loop,	the	first
minimum	item	is	stored	in	position	one.	During	the	first	iteration,	we	selected	the	first	item	and	then	found
the	minimum	value	from	the	remaining	items	(from	2	to	n).	We	assumed	that	the	first	item	is	the	minimum
value.	If	we	find	another	minimum	value,	we	would	mark	its	position	until	we	have	scanned	the	remaining
list	and	found	a	new	minimum	value.	If	no	minimum	value	is	found,	then	our	assumption	is	correct,	and
that	is	indeed	the	minimum	value.	Here	is	a	picture	illustrating	our	20,	45,	93,	67,	10,	97,	52,	88,	33,	92
arrays	during	the	first	two	steps	in	selection	sort:

As	we	can	see	in	the	preceding	image,	we	started	with	the	first	item	in	the	list,	which	is	20.	Then,	we
found	the	minimum	value	from	the	rest	of	the	array,	which	is	10.	At	the	end	of	the	first	iteration,	we	just
swapped	the	values	from	two	places	(marked	by	arrows).	As	a	result,	at	the	end	of	the	first	iteration,	we
have	the	minimum	value	from	the	array	stored	in	the	first	place.	Then,	we	pointed	to	the	next	item,	which
is	45,	and	started	finding	the	next	smallest	items	compared	to	45	from	the	right	side	of	its	position.	We

found	20	from	the	remaining	items	(as	shown	by	two	arrows).	At	the	end	of	the	second	iteration,	we	are
just	swapping	the	second	position	number	to	the	newly	found	smallest	one	from	the	remainder	of	the	list.
This	continues	until	the	last	element,	and,	at	the	end	of	the	process,	we	have	a	sorted	list	of	arrays.	Let's
now	convert	the	pseudocode	into	a	PHP	code.

function	selectionSort(array	$arr):	array	{
	$len	=	count($arr);
	for	($i	=	0;	$i	<
$len;	$i++)	{
	$min	=	$i;
	for	($j	=	$i+1;	$j	<	$len;	$j++)	{
	if	($arr[$j]	<
$arr[$min])	{
	$min	=	$j;
	}
	}

	if	($min	!=	$i)	{
	$tmp	=
$arr[$i];
	$arr[$i]	=	$arr[$min];
	$arr[$min]	=	$tmp;
	}
	}
	return
$arr;
}

As	can	be	seen,	this	is	the	simplest	way	to	sort	an	array	in	ascending	order.	If	you	want	to
do	it	in	descending	order,	we	just	need	to	change	the	comparison	$arr[$j]	<	$arr[$min]
to	$arr[$j]	>	$arr[$min]	and	replace	$min	with	$max.

Complexity	of	selection	sort
Selection	sort	also	looks	similar	to	bubble	sort	and	has	two	for	loops	with	0	to	n.	The	basic	difference
between	bubble	sort	and	selection	sort	is	that,	selection	sort	makes	maximum	n-1	number	of	swapping,
whereas	bubble	sort	can	have	n*n	number	of	swapping,	in	the	worst	case	scenario.	However,	in	the
selection	sort,	the	best	case,	worst	case,	and	average	case	have	similar	complexity.	Here	is	the
complexity	chart	for	selection	sort:

Best	time	complexity Ω(n2)

Worst	time	complexity O(n2)

Average	time	complexity Θ(n2)

Space	complexity	(worst	case) O(1)

Understanding	insertion	Sort
So	far,	we	have	seen	two	comparison-based	sorting	algorithms.	Now,	we	will	explore	another	sorting
algorithm	that	is	somewhat	efficient	compared	to	the	previous	two.	We	are	talking	about	the	insertion	sort.
It	has	the	simplest	implementation	compared	to	the	other	two	sorting	algorithms	we	have	just	seen.	If	the
number	of	items	is	smaller,	insertion	sort	works	better	than	bubble	sort	and	selection	sort.	If	the	data	set	is
large,	then	it	becomes	inefficient,	like	bubble	sort.	Since	the	swapping	is	almost	linear	for	insertion	sort,
it	is	recommended	that	you	use	insertion	sort	instead	of	bubble	sort	and	selection	sort.

As	the	name	suggests,	insertion	sort	works	on	the	principle	of	inserting	the	number	to	its	correct	place	on
the	left-hand	side.	It	starts	from	the	second	item	of	the	array	and	checks	whether	the	items	that	are	left	to	it
are	smaller	than	the	current	value	or	not.	If	so,	it	shifts	the	item	and	stores	the	smaller	item	in	its	correct
position.	Then,	it	moves	to	the	next	item,	and	the	same	principle	continues	until	the	full	array	is	sorted.
The	pseudocode	for	insertion	sort	looks	like	this:

procedure	insertionSort(A	:	list	of	sortable	items)

			n	=	length(A)

			for	i	=	1	to	n	inclusive	do

					key	=	A[i]

					j	=	i	-	1

					while	j	>=	0	and	A[j]	>	key			do

							A[j+1]	=	A[j]

							j--

					end	while

					A[j+1]	=	key

			end	for

end	procedure

If	we	consider	our	previous	list	of	numbers	used	for	bubble	sort	and	selection	sort,	then	we	will	have	the
following	scenario	for	which	we	must	do	insertion	sort.
The	elements	of	our	array	were:	20,	45,	93,	67,	10,	97,	52,	88,	33,	92.

Let's	start	with	the	second	item,	which	is	45.	Now,	we	will	start	from	the	first	item	to	the	left	of	45	and	go
to	the	beginning	of	the	array	to	see	whether	there	is	a	value	greater	than	45	on	the	left.	As	there	is	only	20,
no	insertion	is	required	as	the	item	so	far	is	sorted	until	the	second	element	(20,45).	Now,	we	will	move
our	pointer	to	93,	and	it	starts	again,	comparing	left	of	the	array	starting	from	45	and	search	if	the	value	is
bigger.	Since	45	is	not	bigger	than	93,	it	stops	there,	as	previously,	we	concluded	that	the	first	two	items
are	already	sorted.	Now,	we	have	the	first	three	items	(20,	45,	93)	sorted.	Next,	we	have	67,	and	we	start
again	by	comparing	from	the	left	of	the	numbers.	The	first	number	to	the	left	is	93,	which	is	bigger,	so	it
has	to	move	one	place.	We	move	93	to	the	position	that	was	held	by	67.	Then,	we	move	to	the	next	item	to
the	left	of	it,	which	is	45.	45	is	smaller	than	67,	and	no	further	comparison	is	required.	Now,	we	will
insert	67	at	the	position	that	was	held	by	93	and	93	will	have	to	be	moved	to	67's	position.	This	continues
until	the	full	array	is	sorted.	This	image	illustrates	the	full	sorting	process	using	insertion	sort	at	each
step:

Implementing	insertion	sort
We	will	implement	the	insertion	sort	in	a	similar	way	to	the	other	two	sorts	but	with	a	subtle	difference.
This	time,	we	will	pass	the	array	as	a	reference.	By	doing	so,	we	will	not	require	any	return	value	from
the	function.	We	can	also	pass	the	argument	by	value	and	return	the	array	at	the	end	of	the	function	if	we
want.	Here	is	the	code	for	this:	function	insertionSort(array	&$arr)	{	
$len	=	count($arr);	
for	($i	=	1;	$i	<	$len;	$i++)	{	
$key	=	$arr[$i];	
$j	=	$i	-	1;	

while($j	>=	0	&&	$arr[$j]	>	$key)	{	
$arr[$j+1]	=	$arr[$j];	
$j--;	
}	
$arr[$j+1]	=	$key;	
}	
}

The	parameter	array	is	passed	to	the	function	by	reference	(&$arr).	Thus,	the	original	array,	not	a	copy	of
it,	will	be	modified	directly.	Now,	we	want	to	run	the	code	and	check	the	output.	For	this,	we	have	to	run
the	following	code:

$arr	=	[20,	45,	93,	67,	10,	97,	52,	88,	33,	92];

insertionSort($arr);

echo	implode(",",	$arr);

This	will	produce	the	same	output	we	had	in	the	previous	two	cases.	The	only	difference	is	that	we	are
not	expecting	any	return	array	from	the	function	and	not	storing	it	into	any	new	variable.

If	we	pass	the	array	by	reference,	then	we	do	not	have	to	return	the	array.	The	passed
array	will	be	modified	inside	the	function.	It	is	down	to	choice	how	we	want	to	achieve
the	sorting.

Complexity	of	insertion	sort
Insertion	sort	has	a	complexity	similar	to	bubble	sort.	The	basic	difference	with	bubble	sort	is	that	the
number	of	swapping	is	much	lower	than	bubble	sort.	Here	is	the	complexity	for	insertion	sort:

Best	time	complexity Ω(n)

Worst	time	complexity O(n2)

Average	time	complexity Θ(n2)

Space	complexity	(worst	case) O(1)

	

Understanding	divide-and-conquer	technique	for
sorting
	

So	far,	we	have	explored	the	sorting	option	with	a	full	list	of	numbers.	As	a	result,	we	had	a	big	list	of
numbers	to	compare	every	time.	This	can	be	solved	if	we	can	somehow	make	the	list	smaller.	The	divide-
and-conquer	method	can	be	very	helpful	for	us.	With	this	method,	we	will	divide	a	problem	into	two	or
more	subproblems	or	sets,	and	then	solve	the	smaller	problems	before	combining	all	those	results	from
the	subproblems	to	get	the	final	result.	This	is	what	is	known	as	divide-and-conquer.

The	divide-and-conquer	method	can	allow	us	to	solve	our	sorting	problems	efficiently	and	reduce	the
complexity	of	our	algorithm.	Two	of	the	most	popular	sorting	algorithms	are	merge	sort	and	quick	sort,
which	apply	the	divide-and-conquer	algorithm	to	sort	a	list	of	items,	and	hence,	they	are	considered	to	be
the	best	sorting	algorithms.	Now,	we	will	explore	these	two	algorithms	in	the	next	section.

	

	

Understanding	merge	sort
As	we	already	know	that	merge	sort	applies	the	divide-and-conquer	approach	to	solve	the	sorting
problem,	we	need	to	find	out	two	processes	to	address	the	issue.	The	first	one	is	to	divide	the	problem	set
into	smaller	enough	problems	to	solve	easily,	and	then	combine	those	results.	We	will	apply	a	recursive
approach	here	for	the	divide-and-conquer	part.	The	following	image	shows	how	to	take	the	approach	for
divide-and-conquer.	We	will	now	consider	a	smaller	list	of	numbers	20,	45,	93,	67,	97,	52,	88,	33	to
explain	the	divide-and-conquer	part:

Based	on	the	preceding	image,	we	can	now	start	preparing	our	pseudocode,	which	will	have	two	parts	-
divide	and	conquer.	Here	is	the	pseudocode	to	achieve	that

func	mergesort	(A	:	array	of	sortable	items):

					n	=	length(A)						

					if	(n	==	1)	return	a	

					var	l1	as	array	=	a[0]	...	a[n/2]	

					var	l2	as	array	=	a[n/2+1]	...	a[n]	

					l1	=	mergesort(l1)	

					l2	=	mergesort(l2)	

					return	merge(l1,	l2)	

end	func

func	merge(a:	array,	b	:	array)

					c	=	array

					while	(a	and	b	have	elements)

										if	(a[0]	>	b[0])

															add	b[0]	to	the	end	of	c

															remove	b[0]	from	b

										else

															add	a[0]	to	the	end	of	c

															remove	a[0]	from	a

					end	while

					while	(a	has	elements)

										add	a[0]	to	the	end	of	c

										remove	a[0]	from	a

					end	while

					while	(b	has	elements)

										add	b[0]	to	the	end	of	c

										remove	b[0]	from	b

					return	c

					end	while

end	func

Our	first	part	of	the	pseudocode	shows	the	divide	process.	We	divided	the	array	of	items	until	it	reaches
the	size	of	1.	Then,	we	started	to	merge	the	results	using	the	merge	function.	In	the	merge	function,	we	had
an	array	to	store	the	merged	results.	Because	of	this,	merge	sort	actually	has	more	space	complexity	than
the	other	algorithms	we	have	seen	so	far.	Now,	let's	get	into	coding	and	implement	this	pseudocode	using
PHP.

Implementing	merge	sort
We	will	first	write	the	divide	part	followed	by	the	merge	or	conquer	part.	PHP	has	some	built-in	functions
to	split	an	array.	We	will	use	the	array_slice	function	to	do	the	splitting.	Here	is	the	code	to	do	this:

function	mergeSort(array	$arr):	array	{	

				$len	=	count($arr);	

				$mid	=	(int)	$len	/	2;	

				if	($len	==	1)	

									return	$arr;	

				$left		=	mergeSort(array_slice($arr,	0,	$mid));	

				$right	=	mergeSort(array_slice($arr,	$mid));	

				return	merge($left,	$right);	

}

As	we	can	see	from	the	code,	we	split	the	array	in	a	recursive	way	until	the	array	size	becomes	1.	When
array	size	is	1,	we	start	to	merge	backward,	just	like	the	last	image.	Here	is	the	code	for	the	merge
function,	which	will	take	two	arrays,	and	merge	them	into	one	as	per	our	pseudocode:

function	merge(array	$left,	array	$right):	array	{	

				$combined	=	[];	

				$countLeft	=	count($left);	

				$countRight	=	count($right);	

				$leftIndex	=	$rightIndex	=	0;	

				while	($leftIndex	<	$countLeft	&&	$rightIndex	<	$countRight)	{	

						if	($left[$leftIndex]	>	$right[$rightIndex])	{	

										$combined[]	=	$right[$rightIndex];	

										$rightIndex++;	

						}	else	{	

										$combined[]	=	$left[$leftIndex];	

										$leftIndex++;	

						}	

				}	

				while	($leftIndex	<	$countLeft)	{	

						$combined[]	=	$left[$leftIndex];	

						$leftIndex++;	

				}	

				while	($rightIndex	<	$countRight)	{	

						$combined[]	=	$right[$rightIndex];	

						$rightIndex++;	

				}	

				return	$combined;

}

The	code	is	now	complete	as	we	have	merged	the	two	supplied	arrays	and	returned	the	combined	results
to	the	mergeSort	function.	We	have	just	solved	the	problem	recursively.	If	you	run	the	following	code,	you
will	have	a	list	of	items	in	ascending	order:

$arr	=	[20,	45,	93,	67,	10,	97,	52,	88,	33,	92];

$arr	=	mergeSort($arr);

echo	implode(",",	$arr);

Now,	let's	explore	the	complexity	for	merge	sort.

Complexity	of	merge	sort
Since	merge	sort	follows	the	divide-and-conquer	method,	we	have	to	address	both	complexities	here.	For
an	n-sized	array,	we	first	need	to	divide	the	array	into	two	halves	and	then	merge	them	to	get	an	n-sized
array.	This	can	be	written	in	terms	of	T(n)	as:	T(n)	=	T(n/2)	+	T(n/2)	+	n	,	for	N>1	with	T(1)	=	0	
=	2	T(n/2)+n	

T(n)/n	=	2	T(n/2)/n	+	1	//	divide	both	side	by	n	
=	T(n/2)/(n/2)	+	1	
=	T(n/4)/(n/4)	+	1+	1	//	telescoping	
=	T(n/8)/(n/8)	+	1+	1	+	1	//	again	telescoping	
=	
=	T(n/n)/(n/n)	+	1	+	1	+	1	+	+	1	
=	log	(n)	//	since	T(1)	=	0	

So	T(n)	=	n	log	(n)	//	multiply	both	side	with	n

So,	the	complexity	for	merge	sort	is	O(n	log(n)).	Here	is	the	complexity	chart	for	merge	sort:

Best	time	complexity Ω(nlog(n))

Worst	time	complexity O(nlog(n))

Average	time	complexity Θ(nlog(n))

Space	complexity	(worst	case) O(n)

procedure	Quicksort(A	:	array,p	:int	,r:	int)
	if	(p	<	r)
	q	=	Partition(A,p,r)

Quicksort(A,p,q)
	Quicksort(A,q+1,r)
	end	if
end	procedure

procedure	Partition(A	:	array,p	:int	,r:	int)
	pivot	=	A[p]
	i	=	p-1
	j	=
r+1
	while	(true)
	do
	i	:=	i	+	1
	while	A[i]	<	pivot	
	do
	j	:=	j
-	1
	while	A[j]	>	pivot

	if	i	<	j	then
	swap	A[i]	with	A[j]

else
	return	j
	end	if
	end	while
end	procedure

We	used	the	first	item	as	the	pivot	element.	We	can	also	choose	the	last	item	or	take	a
median	for	choosing	the	pivot	element.	Let's	now	implement	the	algorithm	using	PHP.

Implementing	quick	sort
As	shown	in	the	pseudocode,	we	will	have	two	functions	to	implement	a	quick	sort:	one	function	to	do	the
quick	sort	itself,	and	the	other	for	the	partitioning.	Here	is	the	implementation	to	do	the	quick	sort:
function	quickSort(array	&$arr,	int	$p,	int	$r)	{
if($p	<	$r)	{
$q	=	partition($arr,	$p,	$r);
quickSort($arr,	$p,	$q);
quickSort($arr,	$q+1,	$r);
}
}

Here	is	the	implementation	to	do	the	partitioning:

function	partition(array	&$arr,	int	$p,	int	$r){	

		$pivot	=	$arr[$p];	

		$i	=	$p-1;	

		$j	=	$r+1;	

		while(true)	

		{	

			do	{	

				$i++;	

			}	while($arr[$i]	<	$pivot	&&	$arr[$i]	!=	$pivot);	

			do	{	

				$j--;	

			}	while($arr[$j]	>	$pivot	&&	$arr[$j]	!=	$pivot);	

			if($i	<	$j)	{	

				$temp	=	$arr[$i];	

				$arr[$i]	=	$arr[$j];	

				$arr[$j]	=	$temp;	

			}	else	{	

				return	$j;	

						}	

		}	

}

	$arr	=	[20,	45,	93,	67,	10,	97,	52,	88,	33,	92];	

quickSort($arr,	0,	count($arr)-1);	

echo	implode(",",	$arr);

If	we	visually	illustrate	the	pivot	and	the	sorting	in	the	partitions,	we	can	see	the	following	image.	For
simplicity,	we	are	only	showing	the	steps	where	swapping	took	place:

Complexity	of	quick	sort
The	worst	case	complexity	of	quick	sort	can	be	similar	to	bubble	sort's	complexity.	The	selection	of	the
pivot	actually	causes	this.	Here	is	the	complexity	chart	for	a	quick	sort:

Best	time	complexity Ω(nlog(n))

Worst	time	complexity O(n2)

Average	time	complexity Θ(nlog(n))

Space	complexity	(worst	case) O(log(n))

Understanding	bucket	sort
The	bucket	sort	is	also	known	as	bin	sort.	Bucket	sort	is	a	distribution	sorting	system	where	array
elements	are	placed	in	different	buckets.	Each	bucket	is	then	sorted	individually	by	either	another	sorting
algorithm,	or	by	applying	recursive	bucket	sorting.	An	implementation	of	bucket	sort	using	PHP	can	look
like	this:	function	bucketSort(array	&$data)	{	

$n	=	count($data);	
if	($n	<=	0)	
return;	

$min	=	min($data);	
$max	=	max($data);	
$bucket	=	[];	
$bLen	=	$max	-	$min	+	1;	

$bucket	=	array_fill(0,	$bLen,	[]);	

for	($i	=	0;	$i	<	$n;	$i++)	{	
array_push($bucket[$data[$i]	-	$min],	$data[$i]);	
}	

$k	=	0;	
for	($i	=	0;	$i	<	$bLen;	$i++)	{
$bCount	=	count($bucket[$i]);

for	($j	=	0;	$j	<	$bCount;	$j++)	{	
$data[$k]	=	$bucket[$i][$j];
$k++;
}
}
}

The	time	complexity	of	bucket	sort	is	comparatively	better	than	other	comparison-based	sorting
algorithms.	Here	are	the	complexities	for	bucket	sort:

Best	time	complexity Ω(n+k)

Worst	time	complexity O(n2)

Average	time	complexity Θ(n+k)

Space	complexity	(worst	case) O(n)

Using	PHP's	built-in	sorting	function
PHP	has	a	rich	library	of	predefined	functions,	and	that	also	includes	different	sorting	functions.	It	has
different	functions	to	sort	a	list	of	items	in	an	array	either	by	value	or	by	key/index.	We	can	also	keep	the
association	of	the	array's	values	with	their	respective	keys	while	doing	the	sorting.	Another	important
function	of	PHP	is	the	built-in	function	for	sorting	a	multi-dimensional	array.	Here	is	a	summary	of	these
functions:

Function
name Purpose

sort() This	sorts	an	array	in	ascending	order.	Value/key	association	is	not	preserved.

rsort() Sort	an	array	in	reverse/descending	order.	Index/key	association	is	not	preserved.

asort() Sort	an	array	while	maintaining	index	association.

arsort() Sort	an	array	in	reverse	order	and	maintain	index	association.

ksort()
Sort	an	array	by	key.	It	maintains	key	to	data	correlations.	This	is	useful	mainly	for	associative
arrays.

krsort() Sort	an	array	by	key	in	reverse	order.

natsort() Sort	an	array	using	a	natural	order	algorithm,	and	Value/key	association	is	maintained.

natcasesort()
Sort	an	array	using	a	case	insensitive	"natural	order"	algorithm,	and	Value/key	association	is
maintained.

usort()

Sort	an	array	by	values	using	a	user-defined	comparison	function,	and	Value/Key	association	is
not	maintained.

The	second	parameter	is	a	callable	function	for	comparison.

Sort	an	array	by	keys	using	a	user-defined	comparison	function,	and	Value/key	association	is
maintained.

uksort()

The	second	parameter	is	a	callable	function	for	comparison.

uasort()

Sort	an	array	by	values	using	a	user-defined	comparison	function,	and	Value/key	association	is
maintained.

The	second	parameter	is	a	callable	function	for	comparison.

For	sort,	rsort,	ksort,	krsort,	asort,	and	arsort,	the	following	sorting	flags	are	available:

SORT_REGULAR:	compare	items	as	they	are	(don't	change	types)
SORT_NUMERIC:	compare	items	numerically
SORT_STRING:	compare	items	as	strings
SORT_LOCALE_STRING:	compare	items	as	strings,	based	on	the	current	locale
SORT_NATURAL:	compare	items	as	strings	using	"natural	ordering"

	

Summary
	

In	this	chapter,	you	learned	about	different	sorting	algorithms.	Sorting	is	an	integral	part	of	our
development	process,	and	knowledge	of	different	sorting	algorithms	and	their	complexity	will	help	us
decide	the	best	choice	for	sorting	algorithms	based	on	our	problem	set.	There	are	other	algorithms	for
sorting,	which	can	be	found	online	for	further	study.	We	intentionally	did	not	cover	the	heapsort	in	this
chapter	as	we	will	discuss	that	in	Chapter	10.	In	the	next	chapter,	we	will	discuss	another	important	topic
concerning	algorithms	-	searching.

	

	

	

Exploring	Search	Options
	

Along	with	sorting,	searching	is	one	of	the	most	used	algorithms	in	the	programming	world.	Whether	we
are	searching	our	phone	book,	e-mails,	database,	or	files,	we	are	actually	performing	some	sort	of	search
technique	to	locate	the	item	we	wish	to	find.	It	is	imperative	that	searching	and	sorting	are	the	two	most
important	components	of	programming.	In	this	chapter,	you	will	learn	about	different	searching	techniques
and	how	efficient	they	are.	We	will	also	learn	about	different	ways	of	searching	tree	data	structures.

	

	

Linear	searching
One	of	the	most	common	ways	of	performing	a	search	is	to	compare	each	item	with	the	one	we	are
looking	for.	This	is	known	as	linear	search	or	sequential	search.	It	is	the	most	basic	way	of	performing	a
search.	If	we	consider	that	we	have	n	items	in	a	list,	in	the	worst	case,	we	have	to	search	n	items	to	find	a
particular	item.	We	can	iterate	through	a	list	or	array	to	find	an	item.	Let's	consider	the	following
example:

function	search(array	$numbers,	int	$needle):	bool	{

				$totalItems	=	count($numbers);

				for	($i	=	0;	$i	<	$totalItems;	$i++)	{

						if($numbers[$i]	===	$needle){

								return	TRUE;

						}

					}

				return	FALSE;

}

We	have	a	function	named	search,	which	takes	two	arguments.	One	is	the	list	of	numbers,	and	the	other	is
the	number	we	are	looking	for	in	the	list.	We	are	running	a	for	loop	to	iterate	through	each	item	in	the	list
and	compare	them	with	our	item.	If	a	match	is	found,	we	return	true	and	do	not	continue	with	the	search.
However,	if	the	loop	ends	and	nothing	is	found,	we	return	false	at	the	end	of	the	function	definition.	Let's
use	the	search	function	to	find	something	using	the	following	program:

$numbers	=	range(1,	200,	5);	

if	(search($numbers,	31))	{	

				echo	"Found";	

}	else	{	

				echo	"Not	found";	

}

Here,	we	are	generating	a	random	array	using	PHP's	built-in	function	range,	with	a	range	of	1	to	200
inclusive.	Each	item	will	have	a	gap	of	5	like	1,	6,	11,	16,	and	so	on;	then	we	are	searching	31,	which	is
in	the	list	as	we	have	6,	11,	16,	21,	26,	31,	and	so	on.	However,	if	we	want	to	search	for	32	or	33,	then
the	item	will	not	be	found.	So,	for	this	case,	our	output	will	be	Found.

One	thing	we	need	to	remember	here	is	that	we	are	not	worried	about	whether	our	list	is	in	any	particular
order	or	organized	in	a	certain	way.	If	the	item	we	are	looking	for	is	in	the	first	position,	that	will	be	the
best	result.	The	worst	result	can	be	the	last	item	or	an	item	that	is	not	in	the	list.	In	both	cases,	we	have	to
iterate	over	all	n	items	of	the	list.	Here	is	the	complexity	for	linear/sequential	search:

Best	time	complexity O(1)

Worst	time	complexity O(n)

Average	time	complexity O(n)

Space	complexity	(worst	case) O(1)

As	we	can	see,	the	average	or	worst	time	complexity	for	a	linear	search	is	O(n),	and	that	does	not	change
how	we	order	the	list	of	items.	Now,	if	the	items	in	the	array	are	sorted	in	a	particular	order,	then	we
might	not	have	to	do	a	linear	search,	and	we	can	get	a	better	result	by	doing	a	selective	or	calculative
search.	The	most	popular	and	well-known	search	algorithm	is	"binary	search".	Yes,	it	sounds	like	the
binary	search	tree	you	learned	in	Chapter	6,	Understanding	and	Implementing	Trees,	but	we	can	use	this
algorithm	without	even	constructing	a	binary	search	tree.	So,	let's	explore	this.

Binary	search
Binary	search	is	a	very	popular	search	algorithm	in	the	programming	world.	In	sequential	search,	we
started	from	the	beginning	and	scanned	through	each	item	to	find	the	desired	one.	However,	if	the	list	is
already	sorted,	then	we	do	not	need	to	search	from	the	beginning	or	the	end	of	the	list.	In	a	binary	search
algorithm,	we	start	with	the	middle	of	the	list,	check	whether	the	item	in	the	middle	is	smaller	or	greater
than	the	item	we	are	looking	for,	and	decide	which	way	to	go.	This	way,	we	divide	the	list	by	half	and
discard	one	half	completely,	just	like	the	following	image:

If	we	look	at	the	preceding	image,	we	have	a	sorted	(ascending	order)	list	of	numbers	in	an	array.	We
want	to	know	whether	item	7	is	in	the	array	or	not.	Since	the	array	has	17	items	(0	to	16	index),	we	will
first	go	to	the	middle	index,	which	is	the	eighth	index	for	this	example.	Now,	the	eighth	index	has	a	value
of	14,	which	is	greater	than	the	value	we	are	searching	for,	which	is	7.	This	means	that	if	7	is	present	in
this	array,	it	is	to	the	left	of	14,	since	the	numbers	are	already	sorted.	So,	we	are	discarding	the	array	from
the	eighth	index	to	the	sixteenth	index	as	the	number	cannot	be	in	that	part	of	the	array.	Now,	we	repeat	the
same	process	and	take	the	middle	of	the	remaining	part	of	the	array,	which	is	the	third	element	of	the
remaining	part.	Now,	the	third	element	has	a	value	of	6,	which	is	less	than	7.	As	a	result,	the	item	we	are
looking	for	is	on	the	right-hand	side	of	the	third	element,	not	on	its	left.

Now,	we	will	check	the	fourth	element	to	the	seventh	element	of	the	array,	with	the	middle	element	to	now
point	at	the	fifth	element.	The	fifth	element	value	is	8,	which	is	more	than	7,	the	one	we	are	looking	for.
So,	we	have	to	consider	the	left-hand	side	of	the	fifth	element	to	find	the	item	we	are	looking.	This	time,
we	have	only	two	items	remaining	for	the	array	to	check,	and	the	elements	are	fourth	and	fifth	elements.
As	we	are	moving	to	the	left,	we	will	check	the	fourth	element,	and	we	see	the	value	matches	with	7,
which	we	are	looking	for.	If	the	fourth	index	value	was	not	7,	the	function	will	return	false	as	there	are	no
more	elements	left	for	checking.	If	we	look	at	the	arrow	marks	in	the	preceding	image,	we	can	see	that
within	four	steps,	we	have	found	the	value	we	are	looking	for,	whereas	we	had	to	take	17	steps	to	check
all	17	numbers	in	a	linear	search	function	in	a	worst	case	situation.	This	is	known	as	a	binary	search,	or
half-interval	search,	or	logarithmic	search.

As	we	have	seen	in	our	last	image,	we	have	to	divide	our	initial	list	into	halves	and	continue	until	we
reach	a	point	where	we	cannot	make	any	further	division	to	find	our	item.	We	can	use	an	iterative	way	or
recursive	way	to	perform	the	division	part.	We	will	actually	use	both	ways.	So,	let's	first	define	the
pseudocode	of	a	binary	search	in	the	iterative	way:

BinarySearch(A	:	list	of	sorted	items,	value)	{	

							low	=	0	

							high	=	N

							while	(low	<=	high)	{	

				//	lowest	int	value,	no	fraction	

											mid	=	(low	+	high)	/	2														

											if	(A[mid]	>	value)	

															high	=	mid	-	1	

											else	if	(A[mid]	<	value)	

															low	=	mid	+	1	

											else		

													return	true	

							}

							return	false	

	}

If	we	look	at	the	pseudocode,	we	can	see	that	we	are	adjusting	our	low	and	high	based	on	our	mid	value.
If	the	value	we	are	looking	for	is	greater	than	what	we	have	in	mid,	we	are	adjusting	the	lower	bound	to
be	mid+1.	If	it's	less	than	the	mid	value,	then	we	are	setting	the	higher	value	as	mid-1.	It	continues	until	the
lower	value	becomes	bigger	than	the	higher	value	or	the	item	is	found.	If	the	item	is	not	found,	we	return
false	at	the	end	of	the	function.	Now,	let's	implement	the	pseudocode	using	PHP:

function	binarySearch(array	$numbers,	int	$needle):	bool	{	

				$low	=	0;	

				$high	=	count($numbers)	-	1;	

				while	($low	<=	$high)	{	

						$mid	=	(int)	(($low	+	$high)	/	2);	

						if	($numbers[$mid]	>	$needle)	{	

										$high	=	$mid	-	1;

						}	else	if	($numbers[$mid]	<	$needle)	{	

										$low	=	$mid	+	1;

						}	else	{

										return	TRUE;

						}

				}

				return	FALSE;	

}

In	our	implementation,	we	have	followed	most	of	the	pseudocode	in	the	preceding	page.	Now,	let's	run	the
code	with	two	searches,	where	we	know	one	value	is	in	the	list	and	one	is	not	in	the	list:

$numbers	=	range(1,	200,	5);	

$number	=	31;

if	(binarySearch($numbers,	$number)	!==	FALSE)	{	

				echo	"$number	Found	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}	

$number	=	500;	

if	(binarySearch($numbers,	$number)	!==	FALSE)	{	

				echo	"$number	Found	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}	

As	we	know	from	our	previous	linear	search	code,	31	is	in	the	list,	and	it	should	show	Found.	However,	500
is	not	in	the	list,	and	it	should	show	Not	found.	If	we	run	the	code,	here	is	the	output	we	will	see	in	our
console:

31	Found

500	Not	found

We	will	now	write	the	recursive	algorithm	for	the	binary	search,	which	can	also	be	handy	for	us.	The
pseudocode	will	require	us	to	send	extra	arguments	every	time	we	call	the	function.	We	need	to	send	the
low	and	high	with	every	recursive	call,	which	we	did	not	do	for	the	iterative	one:

BinarySearch(A	:	list	of	sorted	items,	value,	low,	high)	{	

			if	(high	<	low)	

										return	false	

						//	lowest	int	value,	no	fraction	

											mid	=	(low	+	high)	/	2			

											if	(A[mid]	>	value)	

															return	BinarySearch(A,	value,	low,	mid	-	1)	

											else	if	(A[mid]	<	value)	

															return	BinarySearch(A,	value,	mid	+	1,	high)		

					else	

						return	TRUE;						

}

We	can	see	from	the	preceding	pseudocode	that	we	are	now	having	low	and	high	as	parameters,	and	in
each	call,	the	new	values	are	sent	as	arguments.	We	have	the	boundary	condition	where	we	are	checking
whether	the	low	is	bigger	than	the	high.	The	code	looks	smaller	and	cleaner	compared	to	the	iterative	one.
Now,	let's	implement	this	using	PHP	7:

function	binarySearch(array	$numbers,	int	$needle,		

int	$low,	int	$high):	bool	{	

				if	($high	<	$low)	{	

				return	FALSE;	

				}	

				$mid	=	(int)	(($low	+	$high)	/	2);	

				if	($numbers[$mid]	>	$needle)	{	

						return	binarySearch($numbers,	$needle,	$low,	$mid	-	1);	

				}	else	if	($numbers[$mid]	<	$needle)	{	

						return	binarySearch($numbers,	$needle,	$mid	+	1,	$high);	

				}	else	{	

						return	TRUE;	

				}	

}

Now,	let's	use	the	following	code	to	run	this	search	recursively:

$numbers	=	range(1,	200,	5);	

$number	=	31;	

if	(binarySearch($numbers,	$number,	0,	count($numbers)	-	1)	!==	FALSE)	{	

				echo	"$number	Found	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}	

$number	=	500;	

if	(binarySearch($numbers,	$number,	0,	count($numbers)	-	1)	!==	FALSE)	{	

				echo	"$number	Found	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}

As	we	can	see	from	the	preceding	code,	we	sent	0	and	count($numbers)-1	in	each	call	of	recursive	binary
search	for	the	first	time.	Then,	this	high	and	low	is	auto-adjusted	on	each	recursive	call	based	on	the	mid
value.	So,	we	have	seen	both	the	iterative	and	recursive	implementation	of	binary	search.	Based	on	our
needs,	we	can	use	any	one	of	these	in	our	program.	Now,	let's	analyze	the	binary	search	algorithm	and
find	out	how	it	is	better	than	our	linear	or	sequential	search	algorithm.

Analysis	of	binary	search	algorithm
So	far,	we	have	seen	that	for	each	iteration,	we	are	dividing	the	list	by	half	and	discarding	one	half
completely	for	searching.	This	makes	our	list	look	like	n/2,	n/4,	n/8,	and	so	on	after	1,	2,	and	3	iterations,
respectively.	So,	we	can	say	that	after	Kth	iteration,	n/2k	items	will	be	left.	We	can	easily	say	that,	the	last
iteration	occurs	when	n/2k	=	1,	or	we	can	say	that,	2K	=	n.	So,	taking	log	from	both	side	yields,	k	=
log(n),	which	is	the	worst	case	running	time	for	binary	search	algorithm.	Here	is	the	complexity	for	binary
search	algorithm:

Best	time	complexity O(1)

Worst	time	complexity O(log	n)

Average	time	complexity O(log	n)

Space	complexity	(worst	case) O(1)

If	our	array	or	list	is	already	sorted,	it	is	always	preferred	to	apply	binary	search	for	better	performance.
Now,	whether	the	list	is	sorted	in	the	ascending	order	or	descending	order,	it	can	have	some	impact	on
our	calculation	of	low	and	high.	The	logic	we	have	seen	so	far	is	for	the	ascending	order.	If	an	array	is
sorted	in	the	descending	order,	the	logic	will	be	swapped	where	greater	than	will	become	less	than,	and
vice	versa.	One	thing	to	notice	here	is	that	the	binary	search	algorithm	provides	us	with	the	index	we	have
found	of	the	search	item.	However,	there	might	be	some	cases	where	we	not	only	need	to	know	whether
the	number	exists,	but	also	to	find	the	first	appearance	or	last	appearance	in	the	list.	If	we	use	binary
search	algorithm,	then	it	will	return	true	or	maximum	index	number,	where	the	search	algorithm	found	the
number.	However,	it	might	not	be	the	first	appearance	or	last	appearance.	For	that,	we	will	modify	the
binary	search	algorithm	a	little,	which	we	will	call	repetitive	binary	search	tree	algorithm.

Repetitive	binary	search	tree	algorithm
Consider	the	following	image.	We	have	an	array	with	repetitive	items.	If	we	try	to	find	the	first
appearance	of	2	from	the	array,	binary	search	algorithm	from	the	last	section	will	give	us	the	fifth	element.
However,	from	the	following	image,	we	can	see	clearly	it	is	not	the	fifth	element;	instead,	it	is	the	second
element,	which	is	the	correct	answer.	So,	a	modification	is	required	in	our	binary	search	algorithm.	The
modification	will	be	a	repetitive	searching	until	we	reach	the	first	appearance:

Here	is	the	modified	solution	using	iterative	approach:

function	repetitiveBinarySearch(array	$numbers,	int	$needle):	int	{	

				$low	=	0;

				$high	=	count($numbers)	-	1;

				$firstOccurrence	=	-1;

				while	($low	<=	$high)	{	

						$mid	=	(int)	(($low	+	$high)	/	2);	

						if	($numbers[$mid]	===	$needle)	{	

										$firstOccurrence	=	$mid;	

										$high	=	$mid	-	1;	

						}	else	if	($numbers[$mid]	>	$needle)	{	

										$high	=	$mid	-	1;

						}	else	{

										$low	=	$mid	+	1;

						}	

				}	

				return	$firstOccurrence;	

}	

As	we	can	see,	first	we	are	checking	whether	the	mid	has	the	value	we	are	looking	for.	If	it	is	true,	then
we	are	assigning	the	middle	index	as	first	occurrence,	and	we	will	search	the	left	of	the	middle	element	to
check	for	any	occurrences	of	the	number	we	are	looking	for.	We	then	continue	the	iteration	until	we	have
searched	each	index	($low	is	greater	than	$high).	If	no	further	occurrence	is	found,	then	the	variable	first
occurrence	will	have	the	value	of	the	first	index	where	we	found	the	item.	If	not,	we	are	returning	-1	as
usual.	Let's	run	the	following	code	to	check	whether	our	results	are	correct	or	not:

$numbers	=	[1,	2,	2,	2,	2,	2,	2,	2,	2,	3,	3,	3,	3,	3,	4,	4,	5,	5];	

$number	=	2;	

$pos	=	repetitiveBinarySearch($numbers,	$number);	

if	($pos	>=	0)	{	

				echo	"$number	Found	at	position	$pos	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}	

$number	=	5;	

$pos	=	repetitiveBinarySearch($numbers,	$number);	

if	($pos	>=	0)	{	

				echo	"$number	Found	at	position	$pos	\n";	

}	else	{	

				echo	"$number	Not	found	\n";	

}

Now,	we	have	an	array	with	repetitive	values	of	2,	3,	4,	and	5.	We	want	to	search	the	array	and	find	the
position	or	index	where	the	value	has	appeared	for	the	first	time.	For	example,	if	we	are	searching	2	in	a
regular	binary	search	function,	it	will	return	eighth	as	the	position	where	it	found	the	value	2.	In	our	case,
we	are	actually	looking	for	the	second	index,	which	actually	holds	the	first	appearance	of	item	2.	Our
function	repetitiveBinarySearch	does	exactly	that,	and	we	are	storing	the	return	position	to	a	variable	called
$pos.	We	are	showing	the	output	if	the	number	is	found	along	with	the	position.	Now,	if	we	run	the
preceding	code	in	our	console,	we	will	have	the	following	output:

2	Found	at	position	1

5	Found	at	position	16

This	matches	our	expected	results.	So,	we	can	say	we	now	have	a	repetitive	binary	search	algorithm	to
find	first	and	last	occurrences	of	an	item	from	a	given	sorted	list.	This	might	be	a	very	handy	function	to
solve	many	problems.

So	far,	from	our	examples	and	analysis,	we	can	conclude	that	binary	searching	is	definitely	faster	than
linear	searching.	However,	the	major	prerequisite	is	to	have	the	list	sorted	before	applying	binary	search.
Applying	binary	search	in	an	unsorted	array	will	lead	us	to	inaccurate	results.	There	can	be	situations
where	we	receive	an	array	and	we	are	not	sure	whether	the	array	is	sorted	or	not.	Now,	the	question	is,
"Should	we	sort	the	array	first	and	apply	binary	search	algorithm	in	such	cases?	Or	should	we	just	run	a
linear	search	algorithm	to	find	an	item?"	Let's	discuss	this	a	little,	so	that	we	know	how	to	handle	such
situations.

Searching	an	unsorted	array	-	should	we	sort
first?
So	now,	we	are	in	a	situation	where	we	have	an	array	with	n	items	and	they	are	not	sorted.	Since	we
know	binary	search	is	faster,	we	have	decided	to	sort	it	first	and	then	search	for	the	item	using	a	binary
search.	If	we	do	so,	we	have	to	remember	that	the	best	sorting	algorithms	have	a	worst	time	complexity	of
O(nlog	n),	and	for	binary	search,	the	worst	case	complexity	is	O(log	n).	So,	if	we	sort	and	then	apply	the
binary	search,	the	complexity	will	be	O(n	log	n)	as	it	is	the	biggest	one	compared	to	O(log	n).	However,	we
also	know	that	for	any	linear	or	sequential	search	(sorted	or	unsorted),	the	worst	time	complexity	is	O(n),
which	is	much	better	than	O(n	log	n).	Based	on	the	complexity	comparison	of	O(n)	and	O(n	log	n),	we	can
clearly	say	that	performing	a	linear	search	is	a	better	option	if	the	array	is	not	sorted.

Let's	consider	another	situation	where	we	need	to	search	a	given	array	a	multiple	number	of	times.	Let's
denote	k	as	the	number	of	times	we	want	to	search	the	array.	If	k	is	1,	then	we	can	easily	apply	our	linear
approach	discussed	in	the	last	paragraph.	It	will	be	fine	if	the	value	of	k	is	smaller	compared	to	the	size
of	the	array,	which	is	denoted	by	n.	However,	if	the	value	of	k	is	closer	or	bigger	than	n,	then	we	have
some	problems	applying	the	linear	approach	here.

Let's	assume	that	k	=	n,	then	for	n	time,	linear	search	will	have	a	complexity	of	O(n2).	Now,	if	we	go	for
the	sort	and	then	search	option	then	even	if	k	is	bigger,	the	onetime	sorting	will	take	O(n	log	n)	time
complexity.	Then,	each	search	will	take	O(log	n),	and	n	times	searching	will	have	a	worst	case	of	O(n	log	n)
complexity.	If	we	take	the	worst	running	case	here,	we	will	have	O(n	log	n)	for	sorting	and	searching	k
items,	which	is	better	than	sequential	searching.

So,	we	can	come	to	the	conclusion	that	if	a	number	of	search	operations	is	smaller	compared	to	the	size	of
the	array,	it	is	better	not	to	sort	the	array	and	perform	the	sequential	search.	However,	if	the	number	of
search	operation	is	bigger	compared	to	the	size	of	array,	it	is	better	to	sort	the	array	first	and	then	apply
the	binary	search.

Over	the	years,	the	binary	search	algorithm	evolved	and	came	up	with	different	variations.	Instead	of
choosing	the	middle	index	every	time,	we	can	make	calculative	decisions	to	choose	which	index	we
should	use	next.	That	is	what	makes	these	variations	work	efficiently.	We	will	now	talk	about	two	such
variations	of	binary	search	algorithm:	interpolation	search	and	exponential	search.

Interpolation	search
In	binary	search	algorithm,	we	always	start	with	the	middle	of	the	array	to	start	the	searching	process.	If
an	array	is	uniformly	distributed	and	we	are	looking	for	an	item,	which,	may	be	close	to	the	end	of	array,
then	searching	from	the	middle	might	not	sound	like	a	good	choice	to	us.	Interpolation	search	can	be	very
helpful	in	such	cases.	Interpolation	search	is	an	improvement	over	binary	search	algorithm.	Interpolation
search	may	go	to	different	location	based	on	the	value	of	the	searched	key.	For	example,	if	we	are
searching	a	key	that	is	close	to	the	beginning	of	the	array,	it	will	go	to	the	first	part	of	the	array	instead	of
starting	from	the	middle.	The	position	is	calculated	using	a	probe	position	calculator	equation,	which
looks	like	this:

pos	=	low	+	[(key-arr[low])*(high-low)	/	(arr[high]-arr[low])]

As	we	can	see,	we	are	going	from	our	generic	mid	=	(low+high)/2	equation	to	a	more	complex	looking
equation.	This	formula	will	return	a	higher	value	if	the	searched	key	is	closer	to	arr[high]	and	a	much
lower	value	if	the	key	is	closer	to	arr[low].	Now,	let's	implement	this	search	method	with	the	help	of	our
binary	search	code:

function	interpolationSearch(array	$arr,	int	$key):	int	{	

				$low	=	0;	

				$high	=	count($arr)	-	1;	

				while	($arr[$high]	!=	$arr[$low]	&&	$key	>=	$arr[$low]	&&	

						$key	<=	$arr[$high])	{	

				$mid	=	intval($low	+	(($key	-	$arr[$low])	*	($high	-	$low)	

				/	($arr[$high]	-	$arr[$low])));	

						if	($arr[$mid]	<	$key)	

										$low	=	$mid	+	1;	

						else	if	($key	<	$arr[$mid])	

										$high	=	$mid	-	1;	

						else	

										return	$mid;	

				}	

				if	($key	==	$arr[$low])	

						return	$low;	

				else

						return	-1;	

}

Here,	we	are	calculating	in	a	different	way.	Though	it	is	taking	more	computational	steps,	the	good	part	is
that	if	the	list	is	uniformly	distributed,	then	the	average	complexity	of	this	algorithm	is	O(log	(log	n)),	which
is	much	better	compared	to	binary	search's	complexity	of	O(log	n).	Also,	we	have	to	be	careful	if	the
distributions	of	the	keys	are	not	uniform.	In	this	case,	the	performance	of	the	interpolation	search	could
degrade.

Now,	we	will	explore	another	variation	of	binary	search	known	as	exponential	search,	which	can
improve	the	algorithm.

Exponential	search
In	binary	search,	we	are	searching	the	whole	list	for	a	given	key.	Exponential	search	improves	binary
search	by	deciding	the	lower	and	upper	bound	of	the	search	so	that	we	do	not	end	up	searching	the	whole
list.	It	improves	the	number	of	comparisons	we	need	to	find	an	element.	The	search	is	done	in	the
following	two	steps:

1.	 We	determine	the	bound	size	by	looking	for	the	first	exponent	k	where	the	value	of	2k	is	greater	than
the	search	item.	Now,	2k	and	2k-1	become	the	upper	bound	and	lower	bound,	respectively.

2.	 Apply	binary	search	algorithm	for	the	bound	2k	and	2k-1.

Let's	now	implement	the	exponential	search	using	our	recursive	binarySearch	function:	function
exponentialSearch(array	$arr,	int	$key):	int	{	
$size	=	count($arr);	

if	($size	==	0)	
return	-1;	

$bound	=	1;	
while	($bound	<	$size	&&	$arr[$bound]	<	$key)	{	
$bound	*=	2;	
}	
return	binarySearch($arr,	$key,	intval($bound	/	2),	
min($bound,	$size));	
}

Here,	in	step	one,	we	are	taking	i	steps	to	determine	the	boundary.	So,	the	algorithm	takes	O(log	i)
complexity.	We	have	to	remember	that	here,	i	is	much	smaller	than	n.	Then,	we	are	doing	a	binary	search
with	a	bound	of	2j	to	2j-1where	j	=	log	i.	We	know	binary	search	takes	O(log	n)	complexity	where	n	is	the
size	of	the	list.	However,	since	we	are	doing	a	smaller	bound	search,	we	are	actually	searching	2	log	i	\	-	2
log	i	-	1	=	2	log	i	-	1	size.	So,	the	complexity	of	this	bound	will	be	log	(2	log	i	-	1)	=	log	(i)	-	1	=	O(log	i).

So,	the	complexity	of	the	exponential	search	is	as	follows:

Best	time	complexity O(1)

Worst	time	complexity O(log	i)

Average	time	complexity O(log	i)

Space	complexity	(worst	case) O(1)

Search	using	hash	table
Hash	table	can	be	a	very	efficient	data	structure	when	it	comes	to	search	operations.	Since	hash	tables
store	data	in	an	associative	manner,	if	we	know	where	to	look	for	the	data,	we	can	easily	get	the	data
quickly.	In	the	hash	table,	each	data	has	a	unique	index	associated	with	it.	If	we	know	which	index	to	look
at,	we	can	find	the	key	very	easily.	Usually,	in	other	programming	languages,	we	have	to	use	a	separate
hash	function	to	calculate	the	hash	index	to	store	the	value.	The	hash	function	is	designed	to	generate	the
same	index	for	the	same	key	and	also	avoid	collision.	However,	one	of	the	great	features	of	PHP	is	that
PHP	array	itself	is	a	hash	table,	in	its	underlying	C	implementation.	Since	an	array	is	dynamic,	we	do	not
have	to	worry	about	the	size	of	array	or	overflow	array	with	many	values.	We	need	to	store	the	values	in
an	associative	array	so	that	we	can	associate	the	value	with	a	key.	The	key	can	be	the	value	itself	if	it	is	a
string	or	an	integer.	Let's	run	an	example	to	understand	searching	with	a	hash	table:	$arr	=	[];
$count	=	rand(10,	30);	

for($i	=	0;	$i<$count;$i++)	{	
$val	=	rand(1,500);	
$arr[$val]	=	$val;	
}	

$number	=	100;	
if(isset($arr[$number]))	{	
echo	"$number	found	";	
}	else	{	
echo	"$number	not	found";	
}

We	have	just	built	a	simple	random	associative	array	where	value	and	key	are	the	same.	Since	we	are
using	PHP	array,	though	value	can	have	a	range	of	1	to	500,	the	actual	array	size	is	anything	from	10	to	30.
If	it	were	in	any	other	language,	we	would	have	constructed	an	array	with	a	size	of	501	to	accommodate
this	value	to	be	a	key.	That	is	why	the	hash	function	is	used	to	calculate	the	index.	If	we	want,	we	can	also
use	the	PHP's	built-in	function	for	hashing:	string	hash(string	$algo	,string	$data	[,bool	$raw_output	=
false])

The	first	parameter	takes	the	type	of	algorithm	we	want	to	use	for	hashing.	We	can	choose	from	md5,
sha1,	sha256,	crc32,	and	so	on.	Each	of	the	algorithms	produces	a	fixed	length	hash	output,	which	we	can
use	as	key	for	our	hash	table.

If	we	look	at	our	searching	part,	we	can	see	that	we	are	actually	checking	the	associated	index	directly.
This	makes	our	searching	in	complexity	O(1).	In	PHP,	it	might	be	beneficial	to	use	the	hash	table	for	quick
searching	even	without	using	the	hash	function.	However,	we	can	always	use	the	hash	function	if	we	want.

So	far,	we	have	covered	searching	based	on	arrays	and	linear	structures.	We	will	now	shift	our	focus	to
hierarchical	data	structure	searching	such	as	searching	trees	and	graphs.	Though	we	have	not	discussed
graphs	yet	(we	will	discuss	them	in	the	next	chapter),	we	will	keep	our	focus	on	tree	searching,	which	can

also	be	applied	in	graph	searching.

	

Tree	searching
	

One	of	the	best	ways	to	search	hierarchical	data	is	to	create	a	search	tree.	In	Chapter	6,	Understanding	and
Implementing	Trees,	we	saw	how	to	construct	a	binary	search	tree	and	increase	the	efficiency	in
searching.	We	have	also	discovered	different	ways	to	traverse	a	tree.	Now,	we	will	explore	the	two	most
popular	ways	of	searching	a	tree	structure	commonly	known	as	breadth	first	search	(BFS)	and	depth	first
search	(DFS).

	

	

Breadth	first	search
In	a	tree	structure,	a	root	is	connected	to	its	child	node,	and	each	child	node	can	be	represented	as	a	tree.
We	have	already	seen	this	in	Chapter	6,	Understanding	and	Implementing	Trees.	In	a	breadth	first	search,
popularly	known	as	BFS,	we	start	from	a	node	(mostly	root	node)	and	first	visit	all	adjacent	or	neighbor
nodes	before	visiting	the	other	neighbor	nodes.	In	other	words,	we	have	to	move	level	by	level	while	we
are	applying	BFS.	As	we	search	level	by	level,	this	technique	is	known	as	breadth	first	search.	In	the
following	tree	structure,	we	can	use	BFS:

For	this	tree,	the	BFS	will	follow	the	nodes	like	this:	

The	pseudocode	of	BFS	will	look	like	this:

procedure	BFS(Node	root)		

		Q	:=	empty	queue	

		Q.enqueue(root);	

		while(Q	!=	empty)	

					u	:=	Q.dequeue()	

					for	each	node	w	that	is	childnode	of	u	

								Q.enqueue(w)	

					end	for	each	

		end	while	

end	procedure

We	can	see	that	we	have	kept	one	queue	for	tracking	which	nodes	we	need	to	visit.	We	can	keep	another
queue	to	hold	the	sequence	of	visits	and	return	it	to	show	the	visit	sequence.	Now,	we	will	implement	the
BFS	using	PHP	7.

Implementing	breadth	first	search
Since	we	have	not	covered	the	graph	in	detail	so	far,	we	will	keep	our	implementation	for	BFS	and	DFS
strictly	for	tree	structure.	Also,	we	will	use	the	generic	tree	structure	we	have	seen	in	Chapter	6,
Understanding	and	Implementing	Trees,	(not	even	binary	tree).	We	will	use	the	same	TreeNode	class	to
define	our	nodes	and	relationship	with	children.	So,	let's	now	define	the	Tree	class	with	BFS	functionality:

class	TreeNode	{	

				public	$data	=	NULL;	

				public	$children	=	[];	

				public	function	__construct(string	$data	=	NULL)	{	

						$this->data	=	$data;	

				}	

				public	function	addChildren(TreeNode	$node)	{	

						$this->children[]	=	$node;	

				}	

}	

class	Tree	{	

				public	$root	=	NULL;	

				public	function	__construct(TreeNode	$node)	{	

						$this->root	=	$node;	

				}	

				public	function	BFS(TreeNode	$node):	SplQueue	{	

						$queue	=	new	SplQueue;	

						$visited	=	new	SplQueue;	

						$queue->enqueue($node);	

						while	(!$queue->isEmpty())	{	

										$current	=	$queue->dequeue();	

										$visited->enqueue($current);	

										foreach	($current->children	as	$child)	{	

												$queue->enqueue($child);	

										}	

						}	

				return	$visited;	

				}

}

We	have	implemented	the	BFS	method	inside	the	tree	class.	We	are	taking	the	root	node	as	the	starting
point	for	the	breadth	first	search.	Here,	we	have	two	queues:	one	for	keeping	the	nodes	that	we	need	to
visit,	and	one	for	nodes	which	we	have	visited.	We	are	also	returning	the	visited	queue	at	the	end	of	the
method.	Let's	now	imitate	the	tree	we	have	seen	at	the	beginning	of	the	section.	We	want	to	put	the	data
just	like	the	tree	shown	in	the	image	and	also	check	whether	the	BFS	actually	returns	our	expected	pattern
of;	 :

$root	=	new	TreeNode("8");	

				$tree	=	new	Tree($root);	

				$node1	=	new	TreeNode("3");	

				$node2	=	new	TreeNode("10");	

				$root->addChildren($node1);	

				$root->addChildren($node2);	

				$node3	=	new	TreeNode("1");	

				$node4	=	new	TreeNode("6");	

				$node5	=	new	TreeNode("14");	

				$node1->addChildren($node3);	

				$node1->addChildren($node4);	

				$node2->addChildren($node5);	

				$node6	=	new	TreeNode("4");	

				$node7	=	new	TreeNode("7");	

				$node8	=	new	TreeNode("13");	

				$node4->addChildren($node6);	

				$node4->addChildren($node7);	

				$node5->addChildren($node8);	

				$visited	=	$tree->BFS($tree->root);	

				while	(!$visited->isEmpty())	{	

						echo	$visited->dequeue()->data	.	"\n";	

				}	

We	are	building	the	whole	tree	structure	here	by	creating	nodes	and	attaching	them	to	root	and	other
nodes.	Once	the	tree	is	done,	we	are	calling	the	BFS	method	to	find	the	full	sequence	of	traversal.	The	while
loop	at	the	end	is	printing	sequences	of	our	visited	nodes.	Here	is	the	output	of	the	preceding	code:

8

3

10

1

6

14

4

7

13

We	have	received	our	expected	result.	Now,	if	we	want	to	search	to	find	whether	a	node	is	there	or	not,
we	can	add	a	simple	condition	check	for	our	$current	node	value.	If	it	matches,	then	we	can	return	the
visited	queue.

The	BFS	has	a	worst	complexity	of	O	(|V|	+	|E|),	where	V	is	the	number	of	vertices	or	nodes	and	E	is	the
number	of	edges	or	connections	between	the	nodes.	For	space	complexity,	worst	case	is	O	(|V|).

The	graph	BFS	is	similar,	but	with	a	minor	difference.	Since	the	graph	can	be	cyclic	(can
create	a	loop),	we	need	to	make	sure	we	are	not	visiting	the	same	node	again	and	again	to
create	an	infinite	loop.	In	order	to	avoid	revisiting	graph	nodes,	we	have	to	keep	track	of
the	node	we	have	visited.	For	marking	a	visited	node,	we	can	either	use	a	queue,	or	use	a
graph	coloring	algorithm.	We	will	explore	this	in	the	next	chapter.

Depth	first	search
Depth	first	search,	or	DFS,	is	a	search	technique	where	we	start	searching	from	a	node	and	go	as	deep	as
possible	to	the	node	from	the	target	node	through	the	branches.	DFS	is	different	from	BFS,	and	we	try	to
dig	deeper	instead	of	spreading	out	first.	DFS	grows	vertically	and	backtracks	when	it	reaches	the	end	of
the	branch	and	moves	the	next	available	adjacent	nodes	until	the	search	is	over.	We	can	take	the	same	tree
image	from	the	last	section,	which	is	shown	as	follows:

If	we	apply	DFS	here,	the	traversal	will	be	 .	We	start	from	the	root
and	then	visit	the	first	child,	which	is	3.	However,	instead	of	going	to	10	like	the	BFS,	we	will	explore
the	child	nodes	of	3	and	do	this	repeatedly	until	we	reach	the	bottom	of	the	branch.	In	BFS,	we	had	taken
the	iterative	approach.	For	DFS,	we	will	take	the	recursive	approach.	Let's	now	write	the	pseudocode	for
DFS:	procedure	DFS(Node	current)	
for	each	node	v	that	is	childnode	of	current	
DFS(v)	
end	for	each	
end	procedure

Implementing	depth	first	search
The	pseudocode	for	DFS	looks	straightforward.	In	order	to	track	the	sequence	of	node	visits,	we	need	to
use	a	queue,	which	will	track	the	nodes	inside	our	Tree	class.	Here	is	our	implementation	of	Tree	class	with
recursive	DFS:

class	TreeNode	{	

				public	$data	=	NULL;	

				public	$children	=	[];	

				public	function	__construct(string	$data	=	NULL)	{	

						$this->data	=	$data;	

				}	

				public	function	addChildren(TreeNode	$node)	{	

						$this->children[]	=	$node;	

				}	

}	

class	Tree	{	

				public	$root	=	NULL;	

				public	$visited;	

				public	function	__construct(TreeNode	$node)	{	

						$this->root	=	$node;	

						$this->visited	=	new	SplQueue;	

				}	

				public	function	DFS(TreeNode	$node)	{	

						$this->visited->enqueue($node);	

						if($node->children){	

										foreach	($node->children	as	$child)	{	

								$this->DFS($child);	

										}	

						}	

				}

}

As	we	can	see,	we	have	added	one	extra	property	in	the	tree	class	$visited	to	keep	track	of	the	visited
nodes.	When	we	are	calling	the	DFS	method,	we	are	adding	the	node	to	the	queue.	Now,	if	we	use	the	same
tree	structure	from	the	previous	section,	and	just	add	the	DFS	call	and	fetch	the	visited	part,	it	will	look
like	this:

try	{	

				$root	=	new	TreeNode("8");	

				$tree	=	new	Tree($root);	

				$node1	=	new	TreeNode("3");	

				$node2	=	new	TreeNode("10");	

				$root->addChildren($node1);	

				$root->addChildren($node2);	

				$node3	=	new	TreeNode("1");	

				$node4	=	new	TreeNode("6");	

				$node5	=	new	TreeNode("14");	

				$node1->addChildren($node3);	

				$node1->addChildren($node4);	

				$node2->addChildren($node5);	

				$node6	=	new	TreeNode("4");	

				$node7	=	new	TreeNode("7");	

				$node8	=	new	TreeNode("13");	

				$node4->addChildren($node6);	

				$node4->addChildren($node7);	

				$node5->addChildren($node8);	

				$tree->DFS($tree->root);	

				$visited	=	$tree->visited;	

				while	(!$visited->isEmpty())	{	

						echo	$visited->dequeue()->data	.	"\n";	

				}	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

Since	DFS	does	not	return	anything,	we	are	using	the	class	property	visited	to	get	the	queue	so	that	we	can
show	the	sequence	of	visited	nodes.	If	we	run	this	program	in	console,	we	will	have	the	following	output:

8

3

1

6

4

7

10

14

13

The	results	correspond	to	what	was	expected.	If	we	need	an	iterative	solution	for	DFS,	we	have	to
remember	that	we	need	to	use	stack	instead	of	queue	to	track	the	next	node	to	visit.	However,	as	stack
follows	the	LIFO	principle,	for	our	mentioned	graph	image,	the	output	will	be	different	from	our	initial
thought.	Here	is	the	implementation	using	the	iterative	approach:

class	TreeNode	{	

				public	$data	=	NULL;	

				public	$children	=	[];	

				public	function	__construct(string	$data	=	NULL)	{	

						$this->data	=	$data;	

				}	

				public	function	addChildren(TreeNode	$node)	{	

						$this->children[]	=	$node;	

				}	

}	

class	Tree	{	

				public	$root	=	NULL;	

				public	function	__construct(TreeNode	$node)	{	

						$this->root	=	$node;	

				}

				public	function	DFS(TreeNode	$node):	SplQueue	{	

						$stack	=	new	SplStack;

						$visited	=	new	SplQueue;

						$stack->push($node);

						while	(!$stack->isEmpty())	{	

										$current	=	$stack->pop();	

										$visited->enqueue($current);	

										foreach	($current->children	as	$child)	{	

												$stack->push($child);	

										}	

						}	

						return	$visited;	

				}

}

try	{

				$root	=	new	TreeNode("8");	

				$tree	=	new	Tree($root);	

				$node1	=	new	TreeNode("3");	

				$node2	=	new	TreeNode("10");	

				$root->addChildren($node1);	

				$root->addChildren($node2);	

				$node3	=	new	TreeNode("1");	

				$node4	=	new	TreeNode("6");	

				$node5	=	new	TreeNode("14");	

				$node1->addChildren($node3);	

				$node1->addChildren($node4);	

				$node2->addChildren($node5);	

				$node6	=	new	TreeNode("4");	

				$node7	=	new	TreeNode("7");	

				$node8	=	new	TreeNode("13");	

				$node4->addChildren($node6);	

				$node4->addChildren($node7);	

				$node5->addChildren($node8);	

				$visited	=	$tree->DFS($tree->root);	

				while	(!$visited->isEmpty())	{	

						echo	$visited->dequeue()->data	.	"\n";	

				}	

}	catch	(Exception	$e)	{	

				echo	$e->getMessage();	

}

It	looks	very	similar	to	our	iterative	BFS	algorithm.	The	main	difference	is	the	use	of	stack	data	structure
instead	of	queue	data	structure	to	store	the	visited	nodes.	It	will	also	have	an	impact	on	the	output.	The
preceding	code	will	produce	the	output	8	→	10	→	14	→	13	→	3	→	6	→	7	→	4	→	1.	This	is	different	from	our
previous	output	shown	in	the	last	section.	As	we	are	using	stack,	the	output	is	actually	correct.	We	are
using	stack	to	push	the	child	nodes	of	a	particular	node.	For	our	root	node,	which	has	value	8,	we	have	the
first	child	node	with	value	of	3.	It	is	pushed	to	the	stack,	and	then,	the	second	child	node	of	root	has	the
value	of	10	and	is	also	pushed	to	the	stack.	Since	value	10	was	pushed	last,	it	will	come	first,	following
the	LIFO	principle	of	stack.	So,	the	ordering	is	always	going	to	be	starting	from	the	last	branch	to	the	first
branch	if	we	are	using	stack.	However,	if	we	want	to	keep	the	node	ordering	from	left	to	right,	then	we
need	to	make	a	small	adjustment	in	our	DFS	code.	Here	is	the	code	block	with	the	change:

public	function	DFS(TreeNode	$node):	SplQueue	{	

		$stack	=	new	SplStack;	

		$visited	=	new	SplQueue;

		$stack->push($node);	

		while	(!$stack->isEmpty())	{	

						$current	=	$stack->pop();	

						$visited->enqueue($current);	

						$current->children	=	array_reverse($current->children);	

						foreach	($current->children	as	$child)	{	

								$stack->push($child);	

						}	

				}	

				return	$visited;

}

The	only	difference	from	the	previous	code	block	is	that	we	are	adding	the	following	line	before	visiting
the	child	nodes	from	a	particular	node:

$current->children	=	array_reverse($current->children);

Since	stack	does	the	Last-In,	First-Out	(LIFO),	by	reversing,	we	are	making	sure	the	first	node	is	visited
first,	as	we	reversed	the	order.	In	fact,	it	will	simply	work	as	a	queue.	This	will	produce	the	desired
sequence	as	shown	in	the	DFS	section.	If	we	have	a	binary	tree,	then	we	do	it	easily	without	requiring	any
reversal	as	we	can	choose	to	push	the	right	child	first,	followed	by	the	left	child	node	to	pop	the	left	child
first.

DFS	has	a	worst	complexity	of	O	(|V|	+	|E|),	where	V	is	the	number	of	vertices	or	nodes	and	E	is	the
number	of	edges	or	connections	between	the	nodes.	For	space	complexity,	the	worst	case	is	O	(|V|),
which	is	similar	to	BFS.

	

Summary
	

In	this	chapter,	we	discussed	different	searching	algorithms	and	their	complexities.	You	learned	how	to
improve	searching	with	a	hash	table	to	get	a	constant	time	result.	We	also	explored	BFS	and	DFS,	two	of
the	most	important	methods	for	hierarchical	data	searching.	We	will	use	similar	concepts	for	graph	data
structure,	which	we	are	about	to	explore	in	the	next	chapter.	Graph	algorithms	are	crucial	for	solving
many	problems	and	are	used	heavily	in	the	programming	world.	Let's	get	going	with	another	interesting
topic	-	the	graph.

	

	

	

Putting	Graphs	into	Action
	

The	graph	is	one	of	the	most	interesting	data	structures	that	is	used	to	solve	various	real-life	problems.
Whether	we	are	talking	about	showing	directions	on	maps,	finding	the	shortest	route,	planning	for
complex	network	flow,	finding	a	connection	between	profiles	in	social	media,	or	recommendations,	we
are	dealing	with	graph	data	structures	and	their	associated	algorithms.	Graphs	give	us	so	many	ways	to
solve	problems	that	they	have	been	used	frequently	to	solve	complex	problems.	As	a	result,	it	is	very
important	for	us	to	understand	graphs	and	how	we	can	use	them	in	our	solutions.

	

	

Understanding	graph	properties
A	graph	is	a	collection	of	vertices	or	nodes	that	are	connected	to	each	other	through	edges.	These	edges
can	be	ordered	or	unordered,	which	means	that	the	edge	can	have	a	direction	associated	with	it	or	it	can
be	non-directed,	which	is	also	known	as	bidirectional	edge.	We	represent	a	graph	using	a	set	G	in
relationship	with	vertices	V	and	edges	E	as	follows:

G	=	(V,	E)

In	the	preceding	diagram,	we	have	five	vertices	and	six	edges:

V	=	{A,	B,	C,	D,	E}

E	=	{AB,	AC,	AD,	BD,	BE,	CD,	DE}

If	we	consider	the	previous	diagram,	the	connectivity	between	A	and	B	can	be	represented	as	AB	or	BA
as	we	have	not	defined	the	direction	for	the	connectivity.	One	of	the	significant	differences	between	the
graph	and	the	tree	data	structures	is	that	the	graph	can	form	a	cycle	or	loop,	but	a	tree	data	structure
cannot.	Unlike	a	tree	data	structure,	we	can	start	from	any	vertices	in	a	graph	data	structure.	Also,	we	can
have	a	direct	edge	between	any	two	vertices,	whereas	in	a	tree,	two	nodes	can	only	be	connected	if	the
child	node	is	the	immediate	descendant	of	the	parent	node.

There	are	different	properties	and	keywords	related	to	graphs.	We	will	now	explore	those	terms	before
moving	on	to	further	discussions	on	graphs	and	their	applications.

Vertex
Each	node	in	a	graph	is	called	a	vertex.	Usually,	a	vertex	is	represented	as	a	circle.	In	our	diagram,	the
nodes	A,	B,	C,	D,	and	E	are	vertices.

Edge
An	edge	is	a	connection	between	two	vertices.	Usually,	it	is	represented	by	a	line	drawn	between	two
vertices.	In	the	previous	diagram,	we	had	edges	between	A	and	B,	A	and	C,	A	and	D,	B	and	D,	C	and	D,
B	and	E,	and	D	and	E.	We	can	represent	the	edge	as	AB	or	(A,	B).	Edges	can	be	of	three	types:

Directed	edge:	If	an	edge	is	marked	with	an	arrow,	then	it	indicates	a	directed	edge.	A	directed
edge	is	unidirectional.	The	head	of	the	arrow	is	the	end	vertex	and	the	tail	of	the	arrow	is	the	start
vertex:

In	the	preceding	diagram,	we	can	see	that	A	has	a	directed	edge	to	B,	which	means	A,
B	is	an	edge,	but	not	vice	versa	(B,	A).	So,	this	is	an	example	of	a	unidirectional	edge,
or	directed	edge.

Undirected	edge:	An	undirected	edge	is	a	connection	between	two	vertices	without	any
direction.	This	means	that	the	edge	satisfies	a	bidirectional	relationship.	The	following
diagram	is	an	example	of	an	undirected	graph,	where	A	is	connected	to	B	in	such	a	way	that
both	edges	(A,	B)	and	(B,	A)	are	the	same:

Weighted	edge:	When	an	edge	carries	additional	information,	such	as	cost,	distance,	or	other
information,	we	call	that	edge	a	weighted	edge.	This	is	used	for	many	graph	algorithms.	In	the
following	diagram,	the	weight	for	edge	(A,	B)	is	5.	This	can	be	distance,	or	cost,	or	anything,
as	per	the	definition	of	the	graph:

	

Adjacent
	

Two	vertices	are	adjacent	if	they	have	an	edge	in	between	them.	Two	vertices	A	and	B	are	said	to	be
adjacent	if	they	have	a	direct	edge	between	them.	In	the	following	diagram,	we	can	see	that	vertex	1	and
vertex	2	are	connected	with	the	edge	e1,	and	as	a	result,	they	are	called	adjacent.	Since	vertex	2	has	no
edge	between	vertex	3	and	4,	vertex	2	is	not	adjacent	to	vertex	3	and	vertex	4.

	

	

	

Incident
	

An	edge	is	incident	on	a	vertex	if	the	vertex	is	one	of	the	end	points	of	the	edge.	Also,	two	edges	are
incident	if	both	of	them	share	a	vertex.	If	we	consider	the	following	diagram,	we	can	see	the	incident
edges	(e1,	e2),	(e2,	e3),	and	(e1,	e3)	sharing	vertex	1	among	themselves.	We	also	have	incident	edges
(e3,	e4)	that	share	vertex	4	among	themselves	and	edges	(e2,	e4)	that	share	vertex	3	among	themselves.
Similarly,	we	can	say	that	vertex	1	is	incident	on	edges	e1,	e2,	and	e3,	vertex	2	is	incident	on	edge	e1,

vertex	3	is	incident	on	edges	e2,	and	e4,	and	vertex	4	is	incident	on	edges	e3,	and	e4:	

	

	

	

Indegree	and	outdegree
	

The	total	count	of	incoming	edges	to	a	particular	vertex	is	known	as	the	indegree	of	that	vertex,	and	the
total	number	of	outgoing	edges	from	a	particular	vertex	is	known	as	the	outdegree	of	that	vertex.	If	we
consider	the	directed	edges	of	the	following	diagram,	we	can	say	that	vertex	A	has	an	indegree	of	0	and
an	outdegree	of	1,	vertex	B	has	an	indegree	of	2	and	an	outdegree	1,	vertex	C	has	an	indegree	1	and	an
outdegree	of	1,	vertex	D	has	an	indegree	of	1	and	an	outdegree	of	1,	vertex	E	has	an	indegree	of	1	and	an
outdegree	of	2,	and	lastly,	vertex	F	has	an	indegree	of	1	and	an	outdegree	of	0.

	

	

Path
A	path	is	a	sequence	of	vertices	and	edges	that	starts	from	a	starting	vertex	and	ends	in	another	vertex	that
we	are	trying	to	reach.	In	the	following	diagram,	the	path	from	A	to	F	is	represented	by	(A,	B),	(B,	C),
(C,	E),	and	(E,	F):

Types	of	graphs
There	are	different	types	of	graphs	available	based	on	how	they	are	drawn	or	represented.	Each	type	of
graph	has	a	different	behavior	and	usage.	We	will	focus	on	four	main	types	of	graph.

	

Directed	graphs
	

If	a	graph	contains	only	directed	edges,	then	the	graph	is	known	as	a	directed	graph.	A	directed	graph	is
also	known	as	a	digraph	or	a	directed	network.	The	following	diagram	represents	a	directed	graph.	Here,
the	(A,	B),	(B,	C),	(C,	E),	(E,	D),	(E,	F),	and	(D,	B)	edges	are	directed	edges.	Since	the	edges	are

directed,	edge	AB	is	not	the	same	as	edge	BA:	

	

	

	

Undirected	graphs
	

If	a	graph	contains	only	undirected	edges,	then	the	graph	is	an	undirected	graph.	In	other	words,	the	edges
in	an	undirected	graph	are	bidirectional.	Sometimes,	the	undirected	graph	is	also	known	as	an	undirected
network.	In	an	undirected	graph,	if	vertex	A	is	connected	to	vertex	B,	then	it	is	assumed	that	both	(A,	B)
and	(B,	A)	represent	the	same	edge.	The	following	diagram	shows	an	example	of	an	undirected	graph

where	all	the	edges	do	not	have	arrows	to	indicate	direction:	

	

	

	

Weighted	graphs
	

If	all	the	edges	of	a	graph	are	weighted	edges,	then	the	graph	is	known	as	a	weighted	graph.	We	will	talk	a
lot	about	weighted	graphs	in	the	upcoming	sections.	Weighted	graphs	can	be	directed	or	undirected
graphs.	Each	edge	must	have	a	value	associated	with	it.	The	weight	of	an	edge	is	always	referred	to	as	the
cost	of	the	edge.	The	following	diagram	represents	an	undirected	weighted	graph	with	five	vertices	and
seven	edges.	Here,	the	weight	of	the	edge	between	vertex	1	and	2	is	2,	the	edge	between	vertex	1	and	4	is

5,	and	the	edge	between	vertex	4	and	5	is	58:	

	

	

Directed	acyclic	graphs	(DAG)
An	acyclic	graph	is	a	graph	without	a	cycle	or	loop.	If	we	want	to	visit	other	nodes	from	a	particular
node,	we	will	not	visit	any	of	the	nodes	twice.	A	directed	acyclic	graph,	popularly	known	as	a	DAG,	is	a
directed	graph	that	is	acyclic.	A	directed	acyclic	graph	has	many	usages	in	graph	algorithms.	A	directed
acyclic	graph	has	a	topological	ordering,	where	the	ordering	of	the	vertices	is	such	that	the	starting
endpoint	of	every	edge	occurs	earlier	in	the	ordering	than	the	ending	endpoints	of	the	edges.	The

following	diagram	represents	a	DAG:	

From	the	first	look,	it	seems	that	B,	C,	E,	and	D	form	a	cycle,	but	close	observation	shows	that	they	do
not	form	a	cycle,	whereas,	the	example	we	have	used	in	the	directed	graph	section	is	a	perfect	example	of
a	cyclic	graph.

Representing	graphs	in	PHP
Since	graphs	are	represented	with	vertices	and	edges,	we	have	to	consider	both	in	representing	the	graph.
There	are	several	ways	to	represent	a	graph,	but	the	most	popular	ones	are	as	follows:

Adjacency	list
Adjacency	matrix

Adjacency	lists
We	can	represent	a	graph	using	a	linked	list	where	one	array	will	be	used	for	vertices	and	each	vertex
will	have	a	linked	list,	which	will	represent	the	edges	between	adjacent	vertices.	An	example	graph	looks
like	this	when	represented	in	an	adjacency	list:

Adjacency	matrix
In	an	adjacency	matrix,	we	represent	the	graph	in	a	two-dimensional	array,	where	each	node	represents
the	array	index	horizontally	and	vertically.	If	the	edge	from	A	to	B	is	directional,	then	we	mark	that	array
index	[A][B]	to	1	to	mark	the	connection;	otherwise,	it's	0.	If	the	edge	is	not	directional,	then	both	[A][B]
and	[B][A]	are	set	to	1.	If	the	graph	is	a	weighted	graph,	then	[A][B]	or	[B][A]	will	store	the	weight
instead	of	1.	The	following	diagram	shows	the	undirected	graph	representation	using	a	matrix:

This	one	shows	the	directed	graph	representation	of	the	matrix:

Though	our	graph	representation	shows	an	alphabetic	representation	of	array	indexes	in	both	an	adjacency
list	and	matrix,	we	can	use	a	numeric	index	to	represent	vertices	as	well.

	

Revisiting	BFS	and	DFS	for	graphs
	

We	have	already	seen	how	we	can	implement	a	breadth	first	search	(BFS)	and	a	depth	first	search
(DFS)	in	a	tree	structure.	We	will	revisit	our	BFS	and	DFS	for	graphs.	The	difference	between	a	tree
implementation	and	a	graph	implementation	is	that	in	a	graph	implementation,	we	can	start	from	any
vertex,	whereas	we	start	from	the	root	of	the	tree	in	a	tree	data	structure.	Another	important	thing	to
consider	is	that	our	graphs	can	have	cycles,	which	were	absent	in	the	tree,	so,	we	cannot	revisit	a	node	or
vertex	as	it	will	end	up	in	an	infinite	loop.	We	will	use	a	concept	called	graph	coloring	where	we	keep
the	status	of	different	node	visits	with	a	color	or	a	value	to	keep	it	simple.	Let's	now	write	some	code	to
implement	the	BFS	and	DFS	in	the	graph.

	

	

Breadth	first	search
We	are	now	going	to	implement	a	BFS	for	a	graph.	Considering	the	following	undirected	graph,	first,	we
need	to	represent	the	graph	in	a	matrix	or	list.	For	the	sake	of	simplicity,	we	will	use	the	adjacency	matrix

for	the	graph	representation:	

The	preceding	adjacency	graph	has	six	vertices,	and	the	vertices	are	labeled	from	1	to	6	(no	0).	Since	our
vertices	are	numbered,	we	can	use	those	as	array	indexes	for	faster	access.	We	will	can	construct	the
graph	like	this:	$graph	=	[];	
$visited	=	[];	
$vertexCount	=	6;	

for($i	=	1;$i<=$vertexCount;$i++)	{	
$graph[$i]	=	array_fill(1,	$vertexCount,	0);	
$visited[$i]	=	0;	
}

Here,	we	have	two	arrays,	one	for	representing	the	actual	graph	and	the	other	one	for	keeping	track	of	the
visited	nodes.	We	want	to	make	sure	that	we	do	not	visit	a	node	multiple	times	as	it	might	end	up	in	an
infinite	loop.	Since	our	graph	has	six	vertices,	we	kept	$vertexCount	as	6.	We	then	initialize	the	graph	array
as	a	two-dimensional	array	with	an	initial	value	of	0.	We	will	start	the	index	from	1	for	the	array.	We	also
set	each	vertex	as	not	visited	by	assigning	each	vertex	to	0	in	the	$visited	array.	Now,	we	will	add	the
edges	in	our	graph	representation.	Since	the	graph	is	undirected,	we	need	to	set	two	properties	for	each
edge.	In	other	words,	we	need	to	set	bidirectional	edge	values	for	edges	between	the	vertex	labeled	1	and
2	since	both	share	an	edge	between	them.	Here	is	the	code	for	the	full	representation	of	the	earlier	graph:
$graph[1][2]	=	$graph[2][1]	=	1;	
$graph[1][5]	=	$graph[5][1]	=	1;	
$graph[5][2]	=	$graph[2][5]	=	1;	
$graph[5][4]	=	$graph[4][5]	=	1;	
$graph[4][3]	=	$graph[3][4]	=	1;	
$graph[3][2]	=	$graph[2][3]	=	1;	
$graph[6][4]	=	$graph[4][6]	=	1;

So,	we	have	represented	the	graph	using	an	adjacency	matrix.	Now,	let's	define	the	BFS	algorithm	for	the
matrix:

function	BFS(array	&$graph,	int	$start,	array	$visited):	SplQueue	{	

				$queue	=	new	SplQueue;

				$path	=	new	SplQueue;

				$queue->enqueue($start);

				$visited[$start]	=	1;

				while	(!$queue->isEmpty())	{	

						$node	=	$queue->dequeue();

						$path->enqueue($node);

						foreach	($graph[$node]	as	$key	=>	$vertex)	{	

										if	(!$visited[$key]	&&	$vertex	==	1)	{	

										$visited[$key]	=	1;

										$queue->enqueue($key);

										}

						}

				}

				return	$path;

}

Our	implemented	BFS	function	takes	three	arguments:	the	actual	graph,	the	starting	vertex,	and	the	empty
visited	array.	We	could	have	avoided	the	third	argument	and	written	the	initialization	inside	the	BFS
function.	At	the	end	of	the	day,	we	can	choose	either	of	the	ways	to	accomplish	this.	Inside	our	function
implementation,	we	have	two	queues:	one	to	keep	the	nodes	that	we	need	to	visit	and	another	one	for	the
order	of	the	visited	nodes,	or	the	path	of	the	search.	At	the	end	of	the	function,	we	return	the	path	queue.

Inside	the	function,	we	first	add	the	starting	node	to	the	queue.	Then,	we	start	from	that	node	to	visit	its
adjacent	nodes.	If	the	node	is	not	visited	and	has	a	connection	to	the	current	node,	we	add	it	to	our	queue
for	visiting.	We	also	mark	the	current	node	as	visited	and	add	it	to	our	path.	Now,	we	will	call	our	BFS
function	with	our	constructed	graph	matrix	and	a	visiting	node.	Here	is	the	program	to	execute	the	BFS
functionality:	$path	=	BFS($graph,	1,	$visited);	

while	(!$path->isEmpty())	{	
echo	$path->dequeue()."\t";	
}

As	we	can	see	from	the	preceding	code	snippet,	we	start	the	search	from	node	1.	The	output	will	look	like
this:

1							2							5							3							4							6

If	we	had	5	as	the	starting	node	by	changing	the	second	argument	of	the	BFS	function	call	from	1	to	5,	then
the	output	would	have	been	the	following:

5							1							2							4							3							6

Depth	first	search
As	we	have	seen	for	the	BFS,	we	can	define	any	starting	vertex	for	the	DFS	as	well.	The	difference	is	that
for	a	list	of	visited	nodes,	we	will	use	a	stack	instead	of	a	queue.	Other	parts	of	the	code	will	be	similar
to	our	BFS	code.	We	will	also	use	the	same	graph	we	used	for	the	BFS	implementation.	The	DFS
implementation	we	will	implement	is	an	iterative	one.	Here	is	the	code	for	it:	function	DFS(array
&$graph,	int	$start,	array	$visited):	SplQueue	{	
$stack	=	new	SplStack;	
$path	=	new	SplQueue;	

$stack->push($start);	
$visited[$start]	=	1;	

while	(!$stack->isEmpty())	{	
$node	=	$stack->pop();	
$path->enqueue($node);	
foreach	($graph[$node]	as	$key	=>	$vertex)	{	
if	(!$visited[$key]	&&	$vertex	==	1)	{	
$visited[$key]	=	1;	
$stack->push($key);	
}	
}	
}	

return	$path;	
}

As	mentioned	earlier,	for	a	DFS,	we	have	to	use	a	stack	instead	of	a	queue	as	we	need	the	last	vertex	from
the	stack	instead	of	the	first	one	(if	we	have	used	a	queue).	For	the	path	part,	we	use	a	queue	so	that	we
can	show	the	path	sequentially	during	the	display.	Here	is	the	code	to	call	for	our	graph	$graph:	$path	=
DFS($graph,	1,	$visited);	
while	(!$path->isEmpty())	{	
echo	$path->dequeue()."\t";	
}

The	code	will	produce	the	following	output:

1							5							4							6							3							2

For	the	preceding	example,	we	start	from	vertex	1,	and	we	will	visit	vertex	5	first	out	of	the	two	adjacent
vertices	with	the	labels	5	and	2	of	vertex	1.	Now,	vertex	5	has	two	vertices	with	labels	4	and	2.	Vertex	4
will	be	visited	first	as	it	appears	as	the	first	edge	from	vertex	5	(bearing	in	mind	our	left	to	right	direction
of	visiting	nodes).	Next,	we	will	visit	vertex	6	from	vertex	4.	Since,	we	cannot	go	any	further	from	vertex
6,	it	will	return	to	vertex	4	and	visit	the	unvisited	adjacent	vertex	with	the	label	3.	When	we	are	at	vertex
3,	there	are	two	adjacent	vertices	available	from	3.	They	are	labeled	as	vertex	4	and	vertex	2.	We	already

visited	vertex	4	earlier,	so	we	cannot	revisit	it,	and	we	have	to	visit	vertex	2	from	vertex	3.	Since	vertex
2	has	three	vertices,	vertex	3,	5,	and	1,	and	all	of	them	are	already	visited,	we	are	actually	done	with	our
DFS	implementation	here.

We	can	pass	an	extra	parameter	if	we	are	looking	for	a	specific	end	vertex	from	a	starting
vertex.	In	the	earlier	example,	we	were	just	getting	the	adjacent	vertex	and	visiting	all	of
them.	For	a	specific	end	vertex,	we	had	to	match	the	target	vertex	with	each	of	our
visiting	vertex	during	the	iteration	of	the	DFS	algorithm.

Topological	sorting	using	Kahn's	algorithm
Let's	assume	that	we	have	some	tasks	to	do,	and	each	of	the	tasks	has	some	dependencies	that	mean	that
the	dependent	tasks	should	be	done	first	before	doing	the	actual	task.	The	problem	arises	when	we	have
an	interrelationship	between	tasks	and	dependencies.	Now,	we	need	to	come	up	with	a	proper	order	for
completing	the	tasks.	We	need	a	special	type	of	sorting	so	that	we	can	sort	these	connected	tasks	without
violating	our	rules	for	finishing	the	tasks.	Topological	sorting	will	be	the	right	choice	for	solving	such
problems.	In	topological	sorting,	a	directed	edge	AB	from	vertex	A	to	B	is	sorted	in	such	a	way	that	A
will	always	come	before	B	in	the	ordering.	This	will	be	applicable	for	all	the	vertices	and	edges.
Another	important	factor	for	applying	a	topological	sort	is	that	the	graph	must	be	a	DAG.	Any	DAG	has	at
least	one	topological	sorting.	Most	of	the	time,	there	are	multiple	topological	sortings	that	are	possible	for
a	given	graph.	There	are	two	popular	algorithms	available	for	topological	sorting:	Kahn's	algorithm	and
the	DFS	approach.	We	will	talk	about	Kahn's	algorithm	here	as	we	have	already	discussed	DFS	a	few
times	in	this	book.

Kahn's	algorithm	has	the	following	steps	to	find	the	topological	ordering	from	a	DAG:

1.	 Calculate	the	indegree	(incoming	edges)	for	each	of	the	vertex	and	put	all	vertices	in	a	queue	where
the	indegree	is	0.	Also,	initialize	the	count	for	the	visited	node	to	0.

2.	 Remove	a	vertex	from	the	queue	and	perform	the	following	operations	on	it:

1.	Increment	the	visited	node	count	by	1.

2.	Reduce	the	indegree	for	all	adjacent	vertices	by	1.

3.	If	the	indegree	of	the	adjacent	vertex	becomes	0,	add	it	to	the	queue.

3.	 Repeat	step	2	until	the	queue	is	empty.
4.	 If	the	count	of	the	visited	node	is	not	the	same	as	the	count	of	the	nodes,	then	topological	sorting	is

not	possible	for	the	given	DAG.

Let's	consider	the	following	graph.	It	is	a	perfect	example	of	DAG.	Now,	we	want	to	sort	it	using
topological	sorting	and	Kahn's	algorithm:

Now	let	us	represent	this	graph	using	an	adjacency	matrix	as	we	did	previously	for	the	other	graphs.	The
matrix	will	look	as	follows:

$graph	=	[

				[0,	0,	0,	0,	1],	

				[1,	0,	0,	1,	0],	

				[0,	1,	0,	1,	0],	

				[0,	0,	0,	0,	0],	

				[0,	0,	0,	0,	0],	

];

Now,	we	will	implement	Kahn's	algorithm	as	per	our	defined	steps.	Here	is	the	implementation	for	it:

function	topologicalSort(array	$matrix):	SplQueue	{	

				$order	=	new	SplQueue;	

				$queue	=	new	SplQueue;	

				$size	=	count($matrix);	

				$incoming	=	array_fill(0,	$size,	0);	

				for	($i	=	0;	$i	<	$size;	$i++)	{	

						for	($j	=	0;	$j	<	$size;	$j++)	{	

										if	($matrix[$j][$i])	{	

										$incoming[$i]	++;	

										}	

						}	

						if	($incoming[$i]	==	0)	{	

										$queue->enqueue($i);	

						}	

				}	

				while	(!$queue->isEmpty())	{	

						$node	=	$queue->dequeue();	

						for	($i	=	0;	$i	<	$size;	$i++)	{	

										if	($matrix[$node][$i]	==	1)	{	

												$matrix[$node][$i]	=	0;	

												$incoming[$i]	--;	

												if	($incoming[$i]	==	0)	{	

																$queue->enqueue($i);	

												}	

										}	

						}	

						$order->enqueue($node);	

				}	

				if	($order->count()	!=	$size)	//	cycle	detected	

						return	new	SplQueue;	

				return	$order;	

}	

As	we	can	see	from	the	preceding	implementation,	we	have	actually	considered	every	step	we	mentioned
for	Kahn's	algorithm.	We	started	by	finding	the	indegree	for	vertices	and	also	putting	the	0	indegree
vertices	in	a	queue.	Then,	we	checked	each	node	of	the	queue	and	reduced	the	indegree	of	the	neighbor
vertices	and	again	added	any	neighbor	with	0	indegrees	to	the	queue.	At	the	end,	we	returned	the	sorted
queue,	or	an	empty	queue	if	the	count	of	ordered	vertices	and	actual	vertices	count	does	not	match.	We	can
now	call	the	function	to	return	the	sorted	list	of	vertices	as	a	queue.	Here	is	the	code	to	do	this:

$sorted	=	topologicalSort($graph);

while	(!$sorted->isEmpty())	{

				echo	$sorted->dequeue()	.	"\t";

}	

Now,	this	will	go	through	each	of	the	queue	elements	and	print	them.	The	output	will	look	like	this:

2							1							0							3							4

The	output	corresponds	to	our	expectations.	As	we	can	see	from	the	earlier	diagram,	vertex	2	has	a	direct
edge	to	vertex	1	and	vertex	3,	and	vertex	1	has	a	direct	edge	to	vertex	0	and	vertex	3.	Since	vertex	2	has
no	incoming	edges,	we	will	start	from	vertex	2	for	the	topological	sorting.	Vertex	1	has	one	incoming	edge
and	vertex	3	has	two,	so,	after	vertex	2,	we	will	visit	vertex	1	as	per	the	algorithm.	The	same	principle

will	take	us	to	vertex	0	followed	by	vertex	3	and	at	the	end	to	vertex	4.	We	have	to	also	remember	that
there	can	be	multiple	topological	orderings	possible	for	a	given	graph.	The	complexity	of	Kahn's
algorithm	is	O	(V+E),	where	V	is	the	number	of	vertices	and	E	is	the	number	of	edges.

Shortest	path	using	the	Floyd-Warshall
algorithm
A	common	scenario	for	a	pizza-delivery	company	is	to	deliver	the	pizza	as	quickly	as	possible.	Graph
algorithms	can	help	us	in	such	situations.	The	Floyd-Warshall	algorithm	is	a	very	common	algorithm	that
is	used	to	find	the	shortest	path	from	u	to	v	using	all	pairs	of	vertices	(u,	v).	The	shortest	path	indicates	the
shortest	possible	distance	between	two	nodes	that	are	interconnected.	The	graph	for	calculating	the
shortest	path	has	to	be	a	weighted	graph.	In	some	cases,	the	weight	can	be	negative	as	well.	The	algorithm
is	very	simple	and	one	of	the	easiest	to	implement.	It	is	shown	here:

for	i:=	1	to	n	do	

		for	j:=	1	to	n	do	

					dis[i][j]	=	w[i][j]	

for	k:=	1	to	n	do	

			for	i:=	1	to	n	do	

						for	j:=	1	to	n	do	

									sum	:=	dis[i][k]	+	dis[k][j]	

									if	(sum	<	dis[i][j])	

														dis[i][j]	:=	sum	

First,	we	copied	each	of	our	weights	to	a	cost	or	distance	matrix.	Then,	we	ran	through	each	vertex	and
figured	out	the	cost	or	distance	of	visiting	from	vertex	i	to	vertex	j	through	vertex	k.	If	the	distance	or	cost
is	less	than	a	direct	path	between	vertex	i	and	vertex	j,	we	choose	the	path	i	to	k	to	j	instead	of	the	direct
path	of	i	to	j.	Let's	consider	the	following	diagram:

Here,	we	can	see	an	undirected	graph	with	weights	on	each	edge.	Now,	if	we	look	for	the	shortest	path
from	A	to	E,	then	we	have	the	following	options:

A	to	E	via	B	has	a	distance	of	20
A	to	E	via	D	has	a	distance	of	25
A	to	E	via	D	and	B	has	a	distance	of	20
A	to	E	via	B	and	D	has	a	distance	of	35

So,	we	can	see	that	the	lowest	distance	is	20.	Now,	let's	implement	this	programmatically	with	numeric
representations	of	the	vertices.	We	will	use	0,	1,	2,	3,	and	4	instead	of	A,	B,	C,	D,	and	E,	respectively.
Now,	let's	represent	the	earlier	graph	in	an	adjacency	matrix	format:

$totalVertices	=	5;	

$graph	=	[];	

for	($i	=	0;	$i	<	$totalVertices;	$i++)	{	

				for	($j	=	0;	$j	<	$totalVertices;	$j++)	{	

						$graph[$i][$j]	=	$i	==	$j	?	0	:	PHP_INT_MAX;	

				}

}

Here,	we	took	a	difference	approach	and	initialized	all	the	edges	to	the	maximum	value	of	the	PHP
integer.	The	reason	for	doing	this	is	to	ensure	that	a	value	of	0	for	non-edges	does	not	impact	the	algorithm
logic,	as	we	are	searching	for	the	minimum	value.	Now,	we	need	to	add	the	weights	to	the	graph	as	shown
in	the	earlier	diagram:

$graph[0][1]	=	$graph[1][0]	=	10;

$graph[2][1]	=	$graph[1][2]	=	5;

$graph[0][3]	=	$graph[3][0]	=	5;

$graph[3][1]	=	$graph[1][3]	=	5;

$graph[4][1]	=	$graph[1][4]	=	10;

$graph[3][4]	=	$graph[4][3]	=	20;

Since	this	is	an	undirected	graph,	we	assign	both	edges	the	same	value.	If	it	were	a	directed	graph,	we
could	have	made	only	one	entry	for	each	weight.	Now,	it	is	time	to	implement	the	Floyd-Warshall
algorithm	to	find	the	shortest	paths	for	any	given	pair	of	nodes.	Here	is	our	implementation	of	this
function:

function	floydWarshall(array	$graph):	array	{

				$dist	=	[];

				$dist	=	$graph;

				$size	=	count($dist);

				for	($k	=	0;	$k	<	$size;	$k++)

						for	($i	=	0;	$i	<	$size;	$i++)

										for	($j	=	0;	$j	<	$size;	$j++)

								$dist[$i][$j]	=	min($dist[$i][$j],

				$dist[$i][$k]	+	$dist[$k][$j]);

				return	$dist;

}	

As	we	mentioned	earlier,	the	implementation	is	really	simple.	We	have	three	inner	loops	to	calculate	the
minimum	distance,	and	we	also	return	the	distance	array	at	the	end	of	the	function.	Now,	let's	call	this
function	and	check	whether	our	expected	results	match:

$distance	=	floydWarshall($graph);	

echo	"Shortest	distance	between	A	to	E	is:"	.	$distance[0][4]	.	"\n";	

echo	"Shortest	distance	between	D	to	C	is:"	.	$distance[3][2]	.	"\n";	

Here	is	the	output	of	the	code:

Shortest	distance	between	A	to	E	is:20

Shortest	distance	between	D	to	C	is:10

If	we	check	our	previous	graph,	we	can	see	that	the	shortest	distance	between	D	and	C	is	actually	10,	and
the	path	is	D	→	B	→	C	(5+5),	which	is	the	shortest	distance	out	of	all	the	possible	routes	(D	→	A	→	B
→	C	(20),	or	D	→	E	→	B	→	C	(35)).

The	complexity	for	the	Floyd-Warshall	algorithm	is	O	(V3),	where	V	is	the	number	of	vertices	in	the
graph.	Now	we	will	explore	another	algorithm	that	is	famous	for	finding	the	single	source	shortest	path.

Single	source	shortest	path	using	Dijkstra's
algorithm
We	can	easily	find	the	shortest	path	using	the	Floyd-Warshall	algorithm,	but	we	do	not	get	the	actual	path
to	go	from	node	X	to	Y.	This	is	because	the	Floyd-Warshall	algorithm	does	the	calculation	for	the	distance
or	cost	and	does	not	store	the	actual	path	for	the	minimum	cost.	For	example,	using	Google	Maps,	we	can
always	find	a	route	to	our	destination	from	any	given	location.	Google	Maps	can	show	us	the	best	route	as
regards	the	distance,	time	of	travel,	or	other	factors.	This	is	a	perfect	example	of	single	source	shortest
path	algorithm	usage.	There	are	many	algorithms	to	find	the	solution	for	a	single	source	shortest	path
problem;	however,	Dijkstra's	shortest	path	algorithm	is	the	most	popular	one.	There	are	many	ways	to
implement	Dijkstra's	algorithm,	such	as	using	Fibonacci	heaps,	min-heaps,	priority	queues,	and	so	on.
Each	implementation	has	its	own	advantage	regarding	the	performance	and	improvement	of	Dijkstra's
solution.	Let's	go	through	the	pseudocode	for	the	algorithm:

function	Dijkstra(Graph,	source):

						create	vertex	set	Q

						for	each	vertex	v	in	Graph:			

										dist[v]	:=	INFINITY

										prev[v]	:=	UNDEFINED										

										add	v	to	Q									

						dist[source]	:=	0											

						while	Q	is	not	empty:

										u	:=	vertex	in	Q	with	min	dist[u]

										remove	u	from	Q

										for	each	neighbor	v	of	u:

														alt	:=	dist[u]	+	length(u,	v)

														if	alt	<	dist[v]:			

																		dist[v]	:=	alt

																		prev[v]	:=	u

						return	dist[],	prev[]

Now,	we	will	implement	the	algorithm	using	a	priority	queue.	First,	let's	choose	a	graph	to	implement	the
algorithm.	We	can	select	the	following	undirected	weighted	graph.	It	has	six	nodes	with	many	connections
between	the	nodes	and	vertices.	First,	we	need	to	represent	the	following	graph	in	an	adjacency	matrix:

As	we	can	see	from	the	preceding	diagram,	our	vertices	are	labeled	with	the	letters	A	to	F,	so	we	will
use	the	vertex	name	as	the	key	in	a	PHP	associative	array:

$graph	=	[

				'A'	=>	['B'	=>	3,	'C'	=>	5,	'D'	=>	9],

				'B'	=>	['A'	=>	3,	'C'	=>	3,	'D'	=>	4,	'E'	=>	7],

				'C'	=>	['A'	=>	5,	'B'	=>	3,	'D'	=>	2,	'E'	=>	6,	'F'	=>	3],

				'D'	=>	['A'	=>	9,	'B'	=>	4,	'C'	=>	2,	'E'	=>	2,	'F'	=>	2],

				'E'	=>	['B'	=>	7,	'C'	=>	6,	'D'	=>	2,	'F'	=>	5],

				'F'	=>	['C'	=>	3,	'D'	=>	2,	'E'	=>	5],

];

Now,	we	will	implement	Dijkstra's	algorithm	using	a	priority	queue.	We	will	find	a	path	from	the	source
vertex	to	the	target	vertex	using	the	adjacency	matrix	we	created	for	the	last	diagram.	Our	Dijkstra's
algorithm	will	return	an	array	with	the	minimum	distance	between	two	nodes	and	the	followed	path.	We
will	return	the	path	as	a	stack	so	that	we	can	get	the	actual	path	in	the	reverse	order.	Here	is	the
implementation:

function	Dijkstra(array	$graph,	string	$source,string	$target):array{	

				$dist	=	[];	

				$pred	=	[];	

				$Queue	=	new	SplPriorityQueue();	

				foreach	($graph	as	$v	=>	$adj)	{	

						$dist[$v]	=	PHP_INT_MAX;	

						$pred[$v]	=	null;	

						$Queue->insert($v,	min($adj));	

				}	

				$dist[$source]	=	0;	

				while	(!$Queue->isEmpty())	{	

						$u	=	$Queue->extract();	

						if	(!empty($graph[$u]))	{	

										foreach	($graph[$u]	as	$v	=>	$cost)	{	

											if	($dist[$u]	+	$cost	<	$dist[$v])	{	

												$dist[$v]	=	$dist[$u]	+	$cost;	

												$pred[$v]	=	$u;	

								}	

										}	

						}	

				}	

				$S	=	new	SplStack();

				$u	=	$target;	

				$distance	=	0;

				while	(isset($pred[$u])	&&	$pred[$u])	{

						$S->push($u);

						$distance	+=	$graph[$u][$pred[$u]];

						$u	=	$pred[$u];	

				}	

				if	($S->isEmpty())	{	

						return	["distance"	=>	0,	"path"	=>	$S];	

				}	else	{

						$S->push($source);

						return	["distance"	=>	$distance,	"path"	=>	$S];	

				}

}

As	we	can	see	from	the	preceding	implementation,	first,	we	created	two	arrays	to	store	the	distance	and
predecessors,	along	with	the	priority	queue.	Then,	we	set	each	vertex	as	the	maximum	integer	(PHP_INT_MAX)
value	of	PHP	(INFINITY	in	the	pseudocode)	and	the	predecessor	as	NULL.	We	also	took	the	minimum	value
of	all	adjacent	nodes	and	stored	them	in	the	queue.	After	the	loop,	we	set	the	source	node	distance	as	0.
Then	we	checked	each	node	in	the	queue	and	checked	the	nearest	neighbors	to	find	a	minimum	path.	If	a
path	is	found	using	if	($dist[$u]	+	$cost	<	$dist[$v]),	we	assign	it	to	the	vertex.

We	then	created	a	stack	named	$s	to	store	the	path.	We	started	from	our	target	vertex	and	visited	adjacent
vertices	to	reach	our	source	vertex.	As	we	moved	through	the	adjacent	vertices,	we	also	calculated	the
distance	we	covered	by	visiting	those	vertices.	Since	our	function	is	returning	both	the	distance	and	the
path,	we	constructed	an	array	to	return	both	the	distance	and	path	for	the	given	graph,	source,	and	target.	If

no	path	exists,	we	return	0	as	the	distance	and	an	empty	stack	for	the	output.	Now,	we	will	write	a	few
lines	of	code	to	use	the	graph	$graph	and	the	function	Dijkstra	to	check	our	implementation:

$source	=	"A";	

$target	=	"F";	

$result	=	Dijkstra($graph,	$source,	$target);	

extract($result);	

echo	"Distance	from	$source	to	$target	is	$distance	\n";	

echo	"Path	to	follow	:	";	

while	(!$path->isEmpty())	{	

				echo	$path->pop()	.	"\t";	

}	

If	we	run	this	code,	it	will	have	the	following	output	in	our	command	line:

Distance	from	A	to	F	is	8

Path	to	follow	:	A						C							F

The	output	looks	exactly	right,	as	we	can	see	from	the	graph	that	the	shortest	path	from	A	to	F	is	through	C
and	the	shortest	distance	is	5	+	3	=	8.

Dijkstra's	algorithm	has	a	running	complexity	of	O	(V2).	Since	we	are	using	the	minimum	priority	queue,
the	runtime	complexity	is	O	(E	+	V	log	V).

Finding	the	shortest	path	using	the	Bellman-Ford
algorithm
Though	Dijkstra's	algorithm	is	the	most	popular	and	efficient	one	that	is	used	to	find	the	single	source
shortest	path,	there	is	one	problem	that	it	does	not	address.	If	the	graph	has	a	negative	cycle,	Dijkstra's
algorithm	cannot	detect	the	negative	cycle,	and,	thus,	it	does	not	work.	A	negative	cycle	is	a	cycle	where
the	sum	of	all	the	edges	in	the	cycle	is	negative.	If	a	graph	contains	a	negative	cycle,	then	finding	the
shortest	path	will	not	be	possible,	so	it	is	important	that	we	address	the	issue	while	finding	the	shortest
path.	That	is	why	we	use	the	Bellman-Ford	algorithm,	even	though	it	is	slower	compared	to	Dijkstra's
algorithm.	Here	is	the	algorithm	pseudocode	for	the	Bellman-Ford	algorithm	for	the	shortest	path:

function	BellmanFord(list	vertices,	list	edges,	vertex	source)	

		//	This	implementation	takes	a	vertex	source	

		//	and	fills	distance	array	with	shortest-path	information	

		//	Step	1:	initialize	graph	

		for	each	vertex	v	in	vertices:	

				if	v	is	source	

						distance[v]	:=	0	

				else	

						distance[v]	:=	infinity	

		//	Step	2:	relax	edges	repeatedly	

		for	i	from	1	to	size(vertices)-1:	

				for	each	edge	(u,	v)	with	weight	w	in	edges:	

						if	distance[u]	+	w	<	distance[v]:	

								distance[v]	:=	distance[u]	+	w	

		//	Step	3:	check	for	negative-weight	cycles	

				for	each	edge	(u,	v)	with	weight	w	in	edges:	

								if	distance[u]	+	w	<	distance[v]:	

						error	"Graph	contains	a	negative-weight	cycle"	

We	can	see	that	the	Bellman-Ford	algorithm	also	considers	the	edge	sand	vertices	in	finding	the	shortest
path	between	nodes.	This	is	known	as	the	relaxation	process,	which	is	also	used	in	Dijkstra's	algorithm.
The	relaxation	process	in	graph	algorithms	refers	to	the	updating	of	the	cost	of	all	vertices	connected	to	a
vertex	V	if	those	costs	would	be	improved	by	including	the	path	via	V.	In	simple	words,	the	relaxation
process	is	trying	to	lower	the	cost	of	getting	to	a	vertex	using	another	vertex.	Now,	we	will	implement	this
algorithm	for	the	same	graph	we	used	in	Dijkstra's	algorithm.	The	only	difference	is	that	here	we	will	use
numeric	labels	for	our	nodes	and	vertex	here:

Now	it	is	time	to	represent	the	graph	in	an	adjacency	matrix	format.	Here	is	the	matrix	in	PHP:

$graph	=	[

				0	=>	[0,	3,	5,	9,	0,	0],	

				1	=>	[3,	0,	3,	4,	7,	0],	

				2	=>	[5,	3,	0,	2,	6,	3],	

				3	=>	[9,	4,	2,	0,	2,	2],	

				4	=>	[0,	7,	6,	2,	0,	5],	

				5	=>	[0,	0,	3,	2,	5,	0]	

];	

Previously,	we	used	a	value	of	0	to	indicate	that	there	was	no	edge	between	two	vertices.	If	we	do	the
same	here,	then	taking	a	minimum	between	two	edges	where	one	represents	0	will	always	yield	a	0	during
the	relaxation	process,	which	actually	means	that	there	is	no	connection	between	two	vertices.	As	a	result,
we	have	to	choose	a	larger	number	to	represent	the	non-existent	edges.	We	can	use	the	MAX_INT_VALUE
constant	of	PHP	to	represent	those	edges	so	that	those	non-existent	edges	are	not	considered.	This	can	be
our	new	graph	representation:

define("I",	PHP_INT_MAX);	

$graph	=	[

				0	=>	[I,	3,	5,	9,	I,	I],	

				1	=>	[3,	I,	3,	4,	7,	I],	

				2	=>	[5,	3,	I,	2,	6,	3],	

				3	=>	[9,	4,	2,	I,	2,	2],	

				4	=>	[I,	7,	6,	2,	I,	5],	

				5	=>	[I,	I,	3,	2,	5,	I]	

];	

Now,	let's	write	the	implementation	for	the	Bellman-Ford	algorithm.	We	will	use	the	same	approach	we
defined	in	the	pseudocode:

function	bellmanFord(array	$graph,	int	$source):	array	{	

				$dist	=	[];	

				$len	=	count($graph);	

				foreach	($graph	as	$v	=>	$adj)	{	

						$dist[$v]	=	PHP_INT_MAX;	

				}	

				$dist[$source]	=	0;	

				for	($k	=	0;	$k	<	$len	-	1;	$k++)	{	

						for	($i	=	0;	$i	<	$len;	$i++)	{	

										for	($j	=	0;	$j	<	$len;	$j++)	{	

												if	($dist[$i]	>	$dist[$j]	+	$graph[$j][$i])	{	

												$dist[$i]	=	$dist[$j]	+	$graph[$j][$i];	

								}	

										}	

						}	

				}	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						for	($j	=	0;	$j	<	$len;	$j++)	{	

										if	($dist[$i]	>	$dist[$j]	+	$graph[$j][$i])	{	

											echo	'The	graph	contains	a	negative-weight	cycle!';	

											return	[];	

										}	

						}	

								}	

				return	$dist;	

}	

Unlike	Dijkstra's	algorithm,	we	are	not	tracking	the	predecessors.	We	are	considering	the	distance	during
the	relaxation	process.	Since	we	are	using	the	maximum	value	for	an	integer	in	PHP,	it	automatically
cancels	outs	the	possibility	of	choosing	a	nonexistent	edge	with	a	value	of	0	as	the	minimum	path.	The	last
part	of	the	implementation	detects	any	negative	cycle	in	the	given	graph	and	returns	an	empty	array	in	that
case:

$source	=	0;	

$distances	=	bellmanFord($graph,	$source);	

foreach($distances	as	$target	=>	$distance)	{	

				echo	"distance	from	$source	to	$target	is	$distance	\n";	

}	

This	will	have	the	following	output,	which	shows	the	shortest	path	distance	from	our	source	node	to	other
nodes:

distance	from	0	to	0	is	0

distance	from	0	to	1	is	3

distance	from	0	to	2	is	5

distance	from	0	to	3	is	7

distance	from	0	to	4	is	9

distance	from	0	to	5	is	8

The	Bellman-Ford	algorithm	has	the	run-time	complexity	of	O	(V,	E).

Understanding	the	minimum	spanning	tree
(MST)
Suppose	we	are	designing	our	new	office	campus	with	multiple	buildings	interconnected	to	each	other.	If
we	approach	the	problem	by	considering	the	interconnectivity	between	each	building,	it	will	take	a	huge
number	of	cables.	However,	if	we	could	somehow	connect	all	the	buildings	through	a	common
connectivity	where	each	building	is	connected	to	every	other	building	with	only	one	connection,	then	this
solution	will	reduce	the	redundancy	and	cost.	If	we	think	of	our	buildings	as	vertices	and	the	connectivity
between	buildings	as	the	edges,	we	can	construct	a	graph	using	this	approach.	The	problem	we	are	trying
to	solve	is	also	known	as	the	minimum	spanning	tree,	or	MST.	Consider	the	following	graph.	We	have
10	vertices	and	21	edges.	However,	we	can	connect	all	10	vertices	with	only	nine	edges	(the	dark	line).

This	will	keep	our	cost	or	distance	to	a	minimal	level:	

There	are	several	algorithms	that	we	can	use	to	find	an	MST	from	a	given	graph.	The	two	most	popular
are	Prim's	algorithm	and	Kruskal's	algorithm.	We	will	explore	these	two	algorithms	in	the	upcoming
sections.

Implementing	Prim's	spanning	tree	algorithm
Prim's	algorithm	for	finding	the	minimum	spanning	tree	relies	on	a	greedy	approach.	A	greedy	approach	is
defined	as	an	algorithm	paradigm	where	we	try	to	find	the	global	optimal	solution	by	considering	the
local	optimal	solution	at	each	stage.	We	will	explore	greedy	algorithms	in	Chapter	11,	Solve	Problems	with
Advanced	Techniques.	In	a	greedy	approach,	the	algorithm	creates	subsets	of	edges	and	finds	out	the	least
costly	one	from	the	subset	of	edges.	This	subset	of	edges	will	include	all	vertices.	It	starts	from	an
arbitrary	position	and	grows	the	tree	one	vertex	at	a	time	by	choosing	the	cheapest	possible	connection
between	the	vertices.	Let's	consider	the	following	graph:

Now,	we	will	apply	a	very	basic	version	of	Prim's	algorithm	to	get	the	minimum	spanning	tree	as	well	as
the	minimum	cost	or	weight	of	the	edges.	The	graph	will	look	like	this	as	an	adjacency	matrix:

$G	=	[

				[0,	3,	1,	6,	0,	0],	

				[3,	0,	5,	0,	3,	0],	

				[1,	5,	0,	5,	6,	4],	

				[6,	0,	5,	0,	0,	2],	

				[0,	3,	6,	0,	0,	6],	

				[0,	0,	4,	2,	6,	0]	

];	

Now,	we	will	implement	the	algorithm	for	Prim's	minimum	spanning	tree.	We	are	assuming	that	we	are
going	to	start	from	vertex	0	to	find	out	the	whole	spanning	tree,	so	we	will	just	pass	the	graph	adjacency
matrix	in	the	function,	and	it	will	display	the	connecting	edges	for	the	spanning	tree	along	with	the
minimum	cost:

function	primMST(array	$graph)	{	

				$parent	=	[];			//	Array	to	store	the	MST	

				$key	=	[];					//	used	to	pick	minimum	weight	edge									

				$visited	=	[];			//	set	of	vertices	not	yet	included	in	MST	

				$len	=	count($graph);	

				//	Initialize	all	keys	as	MAX	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						$key[$i]	=	PHP_INT_MAX;	

						$visited[$i]	=	false;	

				}	

				$key[0]	=	0;	

				$parent[0]	=	-1;	

				//	The	MST	will	have	V	vertices	

				for	($count	=	0;	$count	<	$len	-	1;	$count++)	{	

		//	Pick	the	minimum	key	vertex	

		$minValue	=	PHP_INT_MAX;	

		$minIndex	=	-1;	

		foreach	(array_keys($graph)	as	$v)	{	

						if	($visited[$v]	==	false	&&	$key[$v]	<	$minValue)	{	

								$minValue	=	$key[$v];	

								$minIndex	=	$v;	

						}	

		}	

		$u	=	$minIndex;	

		//	Add	the	picked	vertex	to	the	MST	Set	

		$visited[$u]	=	true;	

		for	($v	=	0;	$v	<	$len;	$v++)	{	

						if	($graph[$u][$v]	!=	0	&&	$visited[$v]	==	false	&&	

								$graph[$u][$v]	<	$key[$v])	{	

										$parent[$v]	=	$u;	

										$key[$v]	=	$graph[$u][$v];	

						}	

		}	

				}	

				//	Print	MST	

				echo	"Edge\tWeight\n";	

				$minimumCost	=	0;	

				for	($i	=	1;	$i	<	$len;	$i++)	{	

						echo	$parent[$i]	.	"	-	"	.	$i	.	"\t"	.	$graph[$i][$parent[$i]]	

									"\n";	

						$minimumCost	+=	$graph[$i][$parent[$i]];	

				}	

				echo	"Minimum	cost:	$minimumCost	\n";	

}	

Now,	if	we	call	the	function	primMST	with	our	graph	$G,	the	following	will	be	the	output	and	the	MST
constructed	by	the	algorithm:

Edge				Weight

0	-	1			3

0	-	2			1

5	-	3			2

1	-	4			3

2	-	5			4

Minimum	cost:	13

There	are	other	ways	to	implement	Prim's	algorithm	with	the	help	of	a	Fibonacci	heap,	a	priority	queue,
and	so	on.	It	is	quite	similar	to	Dijkstra's	algorithm	to	find	the	shortest	path.	Our	implementation	has	a
time	complexity	of	O	(V2).	Using	the	binary	heap	and	the	Fibonacci	heap,	we	can	reduce	the	complexity
significantly.

Kruskal's	algorithm	for	spanning	tree
Another	popular	algorithm	for	finding	a	minimum	spanning	tree	is	Kruskal's	algorithm.	It	is	similar	to
Prim's	algorithm	and	uses	a	greedy	approach	to	find	the	solution.	Here	are	the	steps	we	need	to	implement
Kruskal's	algorithm:

1.	 Create	a	forest	T	(a	set	of	trees),	where	each	vertex	in	the	graph	is	a	separate	tree.
2.	 Create	a	set	S	containing	all	the	edges	in	the	graph.
3.	 While	S	is	non-empty	and	T	is	not	yet	spanning:

1.	Remove	an	edge	with	the	minimum	weight	from	S.

2.	If	that	edge	connects	two	different	trees,	then	add	it	to	the	forest,	combining	two	trees	into	a
single	tree;	otherwise,	discard	that	edge.

We	will	use	the	same	graph	that	we	used	for	Prim's	algorithm.	Here	is	the	implementation	of	Kruskal's
algorithm:

function	Kruskal(array	$graph):	array	{	

				$len	=	count($graph);	

				$tree	=	[];	

				$set	=	[];	

				foreach	($graph	as	$k	=>	$adj)	{	

				$set[$k]	=	[$k];	

				}	

				$edges	=	[];	

				for	($i	=	0;	$i	<	$len;	$i++)	{	

						for	($j	=	0;	$j	<	$i;	$j++)	{	

								if	($graph[$i][$j])	{	

										$edges[$i	.	','	.	$j]	=	$graph[$i][$j];	

								}	

				}	

				}	

				asort($edges);	

				foreach	($edges	as	$k	=>	$w)	{	

				list($i,	$j)	=	explode(',',	$k);	

				$iSet	=	findSet($set,	$i);	

				$jSet	=	findSet($set,	$j);	

				if	($iSet	!=	$jSet)	{	

								$tree[]	=	["from"	=>	$i,	"to"	=>	$j,	

				"cost"	=>	$graph[$i][$j]];	

								unionSet($set,	$iSet,	$jSet);	

				}	

				}	

				return	$tree;	

}	

function	findSet(array	&$set,	int	$index)	{	

				foreach	($set	as	$k	=>	$v)	{	

						if	(in_array($index,	$v))	{	

								return	$k;	

						}	

				}	

				return	false;	

}	

function	unionSet(array	&$set,	int	$i,	int	$j)	{	

				$a	=	$set[$i];	

				$b	=	$set[$j];	

				unset($set[$i],	$set[$j]);	

				$set[]	=	array_merge($a,	$b);	

}	

As	we	can	see,	we	have	two	separate	functions—unionSet	and	findSet—to	perform	the	union	operations	of
two	disjointed	sets,	as	well	as	find	out	whether	a	number	exists	in	a	set	or	not.	Now,	let's	run	the	program
with	our	constructed	graph	like	this:

$graph	=	[

				[0,	3,	1,	6,	0,	0],	

				[3,	0,	5,	0,	3,	0],	

				[1,	5,	0,	5,	6,	4],	

				[6,	0,	5,	0,	0,	2],	

				[0,	3,	6,	0,	0,	6],	

				[0,	0,	4,	2,	6,	0]	

];	

$mst	=	Kruskal($graph);	

$minimumCost	=	0;	

foreach($mst	as	$v)	{	

				echo	"From	{$v['from']}	to	{$v['to']}	cost	is	{$v['cost']}	\n";	

				$minimumCost	+=	$v['cost'];	

}	

echo	"Minimum	cost:	$minimumCost	\n";	

This	will	produce	the	following	output,	which	is	similar	to	our	output	from	Prim's	algorithm:

From	2	to	0	cost	is	1

From	5	to	3	cost	is	2

From	1	to	0	cost	is	3

From	4	to	1	cost	is	3

From	5	to	2	cost	is	4

Minimum	cost:	13

The	complexity	of	Kruskal's	algorithm	is	O	(E	log	V),	which	is	better	than	the	generic	implementation	of
Prim's	algorithm.

	

Summary
	

In	this	chapter,	we	discussed	different	graph	algorithms	and	their	operations.	Graphs	are	very	handy	in
solving	a	wide	range	of	problems.	We	have	seen	that	for	the	same	graph,	we	can	apply	different
algorithms	and	get	different	performances.	We	have	to	choose	carefully	which	algorithms	we	want	to
apply	based	on	the	nature	of	the	problem.	There	are	many	other	graph	topics	that	we	left	out	of	this	book
due	to	some	constraints.	There	are	topics	such	as	graph	coloring,	bipartite	matching,	and	flow	problems,
which	should	be	studied	and	applied	where	applicable.	In	the	next	chapter,	we	will	shift	our	focus	to	our
last	data	structure	topic	for	this	book,	called	heap,	and	learn	the	different	usages	of	the	heap	data
structure.

	

	

	

Understanding	and	Using	Heaps
	

A	heap	is	a	specialized	data	structure	that	is	based	on	the	tree	abstract	data	type	and	used	in	many
algorithms	and	data	structures.	A	common	data	structure	that	can	be	built	using	a	heap	is	the	Priority
Queue.	Also,	one	of	the	most	popular	and	efficient	sorting	algorithms	that	heap	sort	is	based	on	is	heap
data	structure.	In	this	chapter,	we	are	going	to	discuss	a	heap's	properties,	different	variants	of	heaps,	and
heap	operations.	We	will	also	discover	the	heap	sort	and	will	be	implementing	heap	using	SPL	as	we
progress	through	the	chapter.	We	are	now	going	to	explore	the	heap	and	its	definition	in	the	next	section.

	

	

What	is	a	heap?
By	definition,	a	heap	is	a	specialized	tree	data	structure	that	supports	a	heap	property.	A	heap	property	is
defined	in	such	a	way	that	the	root	of	a	heap	structure	will	be	either	smaller	or	larger	than	its	child	nodes.
If	the	parent	node	is	greater	than	the	child	nodes,	then	it	is	known	as	max-heap	and	if	the	parent	node	is
smaller	than	the	child	nodes	then	it	is	known	as	min-heap.	The	following	figure	shows	an	example	of	max-

heap:	

If	we	look	at	the	root	node,	the	value	100	is	greater	than	the	two	child	nodes	19	and	36.	Similarly	for	19,
the	value	is	greater	than	17	and	3.	It	applies	the	same	rule	for	36	and	17.	As	we	can	see	from	the	tree
structure,	the	tree	is	not	completely	sorted	or	ordered.	But	the	important	fact	is	we	can	always	find	the
maximum	or	minimum	at	the	root	of	the	tree,	which	can	be	very	efficient	for	many	use	cases.

There	are	many	variations	of	heap	structure,	such	as	binary	heap,	b-heap,	Fibonacci	heap,	ternary	heap,
treap,	weak	heap,	and	so	on.	A	Binary	heap	is	one	of	the	most	popular	for	heap	implementations.	A	binary
heap	is	a	complete	binary	tree	where	all	inner	levels	of	the	tree	are	fully	filled.	The	last	level	can	be	fully
filled	or	partially	filled.	Since	we	are	considering	a	binary	heap,	we	can	perform	most	of	our	operations
in	logarithmic	time.	In	this	book,	we	are	going	to	focus	on	binary	heap	implementation	and	operations.

Heap	operations
As	we	have	mentioned	a	few	times	that	heap	is	a	specialized	tree	data	structure,	we	have	to	make	sure
that	we	first	construct	a	heap	from	a	given	list	of	items.	As	heap	has	a	strict	heap	property,	we	have	to
satisfy	the	heap	property	on	each	step.	Here	are	some	of	the	core	operations	for	heap:

Create	heap
Insert	a	new	value
Extract	minimum	or	maximum	from	heap
Remove	a	value
Swapping

Creating	a	heap	from	a	given	list	of	items	or	numbers	requires	us	to	ensure	that	both	heap	property	and
binary	tree	property	are	satisfied.	Which	means	the	parent	node	must	be	greater	or	less	than	the	child
nodes	and	that	will	be	true	for	all	nodes	in	the	tree.	Also	the	tree	must	be	a	complete	binary	tree	all	the
time.	While	creating	a	heap,	we	start	with	one	node	and	insert	a	new	node	to	the	heap.

The	insert	node	operation	has	a	defined	set	of	steps.	We	cannot	start	from	an	arbitrary	node.	The	steps	for
insert	operation	are	as	follows:

1.	 Insert	the	new	node	at	the	bottom	of	the	heap.
2.	 Check	the	new	node	with	parent	value	if	they	are	in	the	right	order.	If	they	are	in	the	right	order,	stop

there.
3.	 If	they	are	not	in	the	right	order,	swap	them	and	move	to	the	previous	step	to	check	the	newly

swapped	node	with	its	parent	node.	This	step	along	with	the	previous	one	is	known	as	sift	up	or	up-
heap,	or	bubble-up,	or	heapify-up,	and	so	on.

The	extract	operation	(minimum	or	maximum)	takes	out	the	root	node	from	the	heap.	After	this	we	have	to
do	the	following	operations	to	ensure	heap	properties	for	the	remaining	heap:

1.	 Move	the	last	node	from	the	heap	as	the	new	root.
2.	 Compare	the	new	root	node	with	the	child	nodes,	if	they	are	in	the	correct	order,	stop.
3.	 If	not,	swap	the	root	node	with	the	child	node	(minimum	child	for	MinHeap,	maximum	child	for	MaxHeap)

and	continue	with	the	previous	step.	This	step	along	with	the	previous	one	is	known	as	sift	down	or
down-heap,	or	bubble-down	or	heapify-down,	and	so	on.

In	heap,	one	of	the	important	operations	is	swapping.	In	many	cases,	we	have	to	swap	two	values	from
two	nodes	without	impacting	the	tree's	properties.	Now	we	are	going	to	implement	a	binary	heap	using
PHP	7.

Implementing	a	binary	heap	in	PHP
One	of	the	most	popular	ways	to	implement	a	binary	heap	is	using	an	array.	Since	heaps	are	complete
binary	trees,	they	can	be	easily	implemented	using	an	array.	If	we	consider	the	root	item	to	be	at	index	1,
then	the	child	items	will	be	at	index	2	and	3.	We	can	represent	this	as	i	for	the	root	and	2*i	for	the	left
child	and	2*i	+1	for	the	right	child.	Also,	we	are	going	to	implement	the	mean	heap	as	our	example.	So,
let	us	get	started	with	the	class	structure	for	the	min-heap	implementation.

First,	we	are	going	to	start	by	creating	a	class	for	MinHeap,	which	will	have	two	properties,	one	for	storing
the	heap	array	and	another	count	for	the	number	of	elements	in	the	heap	at	any	given	moment.	Here	is	the
code	for	the	class:

class	MinHeap	{	

				public	$heap;	

				public	$count;	

				public	function	__construct(int	$size)	{	

								$this->heap	=	array_fill(0,	$size	+	1,	0);	

								$this->count	=	0;	

				}	

}

If	we	look	at	the	preceding	code,	we	can	see	that	we	have	initialized	the	heap	array	to	have	all	0	values
from	0	index	to	$size	+	1.	Since	we	are	considering	putting	the	root	at	index	1,	we	are	going	to	require	an
array	with	one	extra	space.	Now	we	need	a	way	to	build	a	heap	from	a	given	array.	As	we	have	to	satisfy
heap	property,	we	have	to	add	one	item	to	the	heap	and	check	if	the	heap	property	satisfies	or	not	by	using
the	C	steps.	Here	is	the	code	block	for	creating	a	heap	by	inserting	one	item	at	a	time	and	also	the	siftUp
process:

public	function	create(array	$arr	=	[])	{	

				if	($arr)	{	

								foreach	($arr	as	$val)	{	

												$this->insert($val);	

								}	

				}	

}	

public	function	insert(int	$i)	{	

				if	($this->count	==	0)	{	

								$this->heap[1]	=	$i;	

								$this->count	=	2;	

				}	

				else	{	

								$this->heap[$this->count++]	=	$i;	

								$this->siftUp();	

				}	

}	

public	function	siftUp()	{	

				$tmpPos	=	$this->count	-	1;	

				$tmp	=	intval($tmpPos	/	2);	

				while	($tmpPos	>	0	&&		

				$this->heap[$tmp]	>	$this->heap[$tmpPos])	{	

								$this->swap($tmpPos,	$tmp);	

								$tmpPos	=	intval($tmpPos	/	2);	

								$tmp	=	intval($tmpPos	/	2);	

				}	

}	

First	we	use	the	create	method	to	build	a	heap	from	an	array.	For	each	element	in	the	array,	we	insert	it	to
the	heap	using	an	insert	method.	In	the	insert	method,	we	check	if	the	current	size	of	the	heap	is	0	or	not.	If
the	current	size	is	0,	we	add	the	first	item	to	index	1	and	setting	the	next	counter	at	2.	If	the	heap	already
has	an	item,	we	will	store	the	new	item	in	the	last	position	and	increment	the	counter.	We	also	call	the
siftUp()	method	to	make	sure	the	newly	inserted	value	satisfies	the	heap	property.

Inside	the	siftUp	method,	we	consider	the	last	position	and	its	parent	position	to	compare.	If	the	child
value	is	less	than	the	parent	one,	we	swap	them.	We	continue	this	until	we	reach	the	root	node	at	the	top.
This	method	ensures	that	if	the	inserted	value	at	the	end	is	smallest,	it	will	be	sifted	up	in	the	tree.	But	if	it
is	not,	the	tree	will	remain	as	it	is.	Though	we	have	talked	about	swapping,	we	have	not	seen	the
implementation	yet.	Here	is	the	implementation:

public	function	swap(int	$a,	int	$b)	{	

				$tmp	=	$this->heap[$a];	

				$this->heap[$a]	=	$this->heap[$b];	

				$this->heap[$b]	=	$tmp;	

}

Since	the	root	element	has	the	minimum	value	in	the	heap	(we	are	implementing	min-heap).	The	extract
method	will	return	the	minimum	value	of	the	current	heap	all	the	time:

public	function	extractMin()	{	

								$min	=	$this->heap[1];	

								$this->heap[1]	=	$this->heap[$this->count	-	1];	

								$this->heap[--$this->count]	=	0;	

								$this->siftDown(1);	

								return	$min;	

				}

The	extractMin	method	returns	the	first	index	of	the	array	and	replaces	it	with	the	last	item	of	the	array.
After	that,	it	performs	the	siftDown	check	for	the	newly	placed	root	so	that	it	ensures	the	heap	property.
Since	we	are	extracting	the	root	value,	we	are	replacing	the	last	index	value	with	0,	which	we	have	used
for	initializing	the	heap	array.	Now	we	are	going	to	write	the	siftDown	method,	which	we	are	calling	the
extract	method:

public	function	siftDown(int	$k)	{	

				$smallest	=	$k;	

				$left	=	2	*	$k;	

				$right	=	2	*	$k	+	1;	

				if	($left	<	$this->count	&&		

				$this->heap[$smallest]	>	$this->heap[$left])	{	

								$smallest	=	$left;	

				}	

				if	($right	<	$this->count	&&	$this->heap[$smallest]	>	$this-		

						>heap[$right])	{	

								$smallest	=	$right;	

				}

				if	($smallest	!=	$k)	{

								$this->swap($k,	$smallest);	

								$this->siftDown($smallest);	

				}

}	

We	consider	that	the	item	at	index	$k	is	the	smallest	value.	Then	we	compare	the	smallest	value	with	the
left	and	right	child.	If	there	is	smaller	value	available,	we	swap	the	smallest	value	with	the	root	node	and
it	continues	until	the	tree	satisfies	the	heap	property.	This	function	calls	itself	recursively	every	time

swapping	is	required.	Now	we	need	one	more	method	to	display	the	current	heap	as	a	string.	For	that	we
can	write	a	small	method	as	follows:

public	function	display()	{	

				echo	implode("\t",	array_slice($this->heap,	1))	.	"\n";	

}

If	we	pull	all	the	pieces	together	now,	we	have	a	solid	implementation	for	min-heap.	Let	us	now	run	a	test
to	see	if	our	implementation	satisfies	the	min-heap	properties.	Here	is	the	code	we	can	run	to	build	the
heap	and	also	extract	the	minimum	from	the	heap	multiple	times:

$numbers	=	[37,	44,	34,	65,	26,	86,	129,	83,	9];	

echo	"Initial	array	\n"	.	implode("\t",	$numbers)	.	"\n";	

$heap	=	new	MinHeap(count($numbers));	

$heap->create($numbers);	

echo	"Constructed	Heap\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

echo	"Min	Extract:	"	.	$heap->extractMin()	.	"\n";	

$heap->display();	

If	we	run	this	code,	the	following	output	will	be	shown	in	the	terminal:

Initial	array

37						44						34						65						26						86						129					83						9

Constructed	Heap

9							26						37						34						44						86						129					83						65

Min	Extract:	9

26						34						37						65						44						86						129					83						0

Min	Extract:	26

34						44						37						65						83						86						129					0							0

Min	Extract:	34

37						44						86						65						83						129					0							0							0

Min	Extract:	37

44						65						86						129					83						0							0							0							0

Min	Extract:	44

65						83						86						129					0							0							0							0							0

Min	Extract:	65

83						129					86						0							0							0							0							0							0

As	we	can	see	from	the	preceding	output,	when	we	constructed	the	min-heap,	the	lowest	value	of	9	is	in
the	root.	Then	we	extracted	the	minimum	value,	we	took	9	from	the	heap.	The	root	was	then	taken	by	the
next	minimum	value	of	26	and	then	followed	by	34,	37,	44,	and	65.	Every	time	we	take	the	minimum	out,	the
heap	is	reconstructed	again	for	the	minimum	value.	Since	we	have	seen	all	applicable	operations	for	a
heap	data	structure,	we	are	now	going	to	analyze	the	complexity	for	different	heap	operations.

Analyzing	the	complexity	of	heap	operations
Since	there	are	different	variations	for	heap	implementation,	the	complexity	also	varies	in	the	different
implementation.	One	of	the	key	facts	for	the	heap	is	the	extract	operation	that	will	always	take	O(1)	time	to
get	the	maximum	or	minimum	from	the	heap.	Since	we	have	focused	on	binary	heap	implementation,	we
are	going	to	see	the	analysis	of	binary	heap	operations:

Operation Complexity	-	average Complexity	-	Worst

Search O(n) O(n)

Insert O(1) O(log	n)

Delete O(log	n) O(log	n)

Extract O(1) O(1)

Space O(n) O(n)

Since	the	heap	is	not	fully	sorted,	the	search	operation	will	take	more	than	a	regular	binary	search	tree.

Using	heaps	as	a	priority	queue
One	of	the	main	ways	to	use	the	heap	data	structure	is	to	create	a	priority	queue.	As	we	have	seen	in	Chapte
r	4,	Constructing	Stacks	and	Queues,	priority	queues	are	special	queues	where	the	FIFO	behavior
depends	on	the	priority	of	the	element	rather	than	the	way	items	are	added	to	the	queue.	We	have	already
seen	the	implementation	using	Linked	list	and	SPL.	Now	we	are	going	to	explore	the	priority	queue
implementation	using	heap	and	especially	max-heap.

Now	we	are	going	to	implement	the	priority	queue	using	MaxHeap.	Here,	the	maximum	priority	item	is
removed	from	the	queue	first.	Our	implementation	will	be	similar	to	our	last	implementation	of	MinHeap
with	a	little	difference.	Instead	of	starting	the	root	at	1,	we	want	to	start	it	from	0.	So,	the	calculation	of
the	left	and	right	child	changes	as	well.	This	will	help	us	to	understand	both	approaches	of	constructing	a
heap	using	an	array.	Here	is	the	implementation	for	the	MaxHeap	class:

class	MaxHeap	{	

				public	$heap;	

				public	$count;	

				public	function	__construct(int	$size)	{	

								$this->heap	=	array_fill(0,	$size,	0);	

								$this->count	=	0;	

				}	

				public	function	create(array	$arr	=	[])	{	

								if	($arr)	{	

												foreach	($arr	as	$val)	{	

																$this->insert($val);	

												}	

								}	

				}	

				public	function	display()	{	

								echo	implode("\t",	array_slice($this->heap,	0))	.	"\n";	

				}	

				public	function	insert(int	$i)	{	

				if	($this->count	==	0)	{	

								$this->heap[0]	=	$i;	

								$this->count	=	1;	

				}	else	{	

								$this->heap[$this->count++]	=	$i;	

								$this->siftUp();	

				}	

				}	

public	function	siftUp()	{	

				$tmpPos	=	$this->count	-	1;	

				$tmp	=	intval($tmpPos	/	2);	

				while	($tmpPos	>	0	&&	$this->heap[$tmp]	<	$this->heap[$tmpPos])	{	

								$this->swap($tmpPos,	$tmp);	

								$tmpPos	=	intval($tmpPos	/	2);	

								$tmp	=	intval($tmpPos	/	2);	

				}	

}	

public	function	extractMax()	{	

				$min	=	$this->heap[0];	

				$this->heap[0]	=	$this->heap[$this->count	-	1];	

				$this->heap[$this->count	-	1]	=	0;	

				$this->count--;	

				$this->siftDown(0);	

				return	$min;	

}	

public	function	siftDown(int	$k)	{	

				$largest=	$k;	

				$left	=	2	*	$k	+	1;	

				$right	=	2	*	$k	+	2;	

				if	($left	<	$this->count		

						&&	$this->heap[$largest]	<	$this->heap[$left])	{	

								$largest	=	$left;	

				}	

				if	($right	<	$this->count		

						&&	$this->heap[$largest]	<	$this->heap[$right])	{	

								$largest	=	$right;	

				}	

				if	($largest!=	$k)	{	

								$this->swap($k,	$largest);	

								$this->siftDown($largest);	

				}	

}	

				public	function	swap(int	$a,	int	$b)	{	

						$temp	=	$this->heap[$a];	

						$this->heap[$a]	=	$this->heap[$b];	

						$this->heap[$b]	=	$temp;	

				}

}

Let's	go	through	our	implementation	of	the	MaxHeap	class.	There	are	some	minor	differences	in	our	MaxHeap
implementation	from	our	MinHeap	implementation	in	the	last	section.	The	first	difference	is	that	we	have	an
array	of	size	n	for	MaxHeap,	whereas	we	had	an	array	of	size	n+1	for	MinHeap.	That	makes	our	insert
operation	for	MaxHeap	start	inserting	from	index	0,	whereas	in	MinHeap,	we	started	from	index	1.	The	siftUp
functionality	only	sifts	a	value	to	the	top	if	the	value	of	the	newly	inserted	item	is	greater	than	the
immediate	parent	value.	Also,	the	extractMax	method	returns	the	first	value	of	the	array	at	index	0,	which	is
the	maximum	from	the	heap.	Once	we	extract	the	maximum	value,	we	need	to	get	the	maximum	value	from
the	remaining	items	and	store	it	at	index	0.	The	siftDown	function	also	operates	to	check	if	the	left	or	right
child	value	is	bigger	than	the	parent	node	value	and	we	swap	the	values	to	store	the	maximum	value	at
parent	node.	We	continue	to	do	this	recursively	to	ensure	the	maximum	value	is	stored	in	the	root	at	the
end	of	function	calls.	This	MaxHeap	implementation	can	be	used	as	standalone	heap	implementation	if	we
want.	Since	we	are	planning	to	implement	the	priority	queue	using	a	heap,	we	are	going	to	add	another
class	to	extend	the	MaxHeap	class	to	show	the	characteristics	of	a	Priority	Queue.	Let	us	explore	the
following	code:

class	PriorityQ	extends	MaxHeap	{	

				public	function	__construct(int	$size)	{		

								parent::__construct($size);	

				}	

				public	function	enqueue(int	$val)	{	

								parent::insert($val);	

				}	

				public	function	dequeue()	{	

								return	parent::extractMax();	

				}

}

Here	we	are	just	extending	the	MaxHeap	class	and	adding	a	wrapper	for	enqueue	and	dequeue	operations	using
the	insert	and	extractMax	at	stealth	mode.	Let	us	now	run	the	PriorityQ	code	with	the	same	numbers	we	did
for	MinHeap:

$numbers	=	[37,	44,	34,	65,	26,	86,	129,	83,	9];	

$pq	=	new	PriorityQ(count($numbers));	

foreach	($numbers	as	$number)	{	

				$pq->enqueue($number);	

}	

echo	"Constructed	Heap\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();	

echo	"DeQueued:	"	.	$pq->dequeue()	.	"\n";	

$pq->display();

As	we	can	see	from	the	preceding	code,	we	are	not	constructing	the	heap	directly	from	the	array.	We	are
using	the	priority	queue	class	to	enqueue	each	number	in	the	queue.	Also,	the	dequeue	operation	will	get
the	top	priority	item	from	the	queue.	If	we	run	this	code	from	the	command	line,	we	will	have	the
following	output:

Constructed	Heap

129					86						44						83						26						34						37						65						9

DeQueued:	129

86						83						44						65						26						34						37						9							0

DeQueued:	86

83						65						44						9							26						34						37						0							0

DeQueued:	83

65						37						44						9							26						34						0							0							0

DeQueued:	65

44						37						34						9							26						0							0							0							0

DeQueued:	44

37						26						34						9							0							0							0							0							0

DeQueued:	37

34						26						9							0							0							0							0							0							0

As	we	can	see	from	the	output,	the	MaxHeap	implementation	is	helping	us	to	get	the	maximum	value	item	on
each	dequeue	operation.	This	is	one	of	the	ways	of	implementing	the	priority	queue.	If	we	want,	we	can
also	sort	the	whole	heap	at	one	go	and	then	use	the	sorted	array	as	the	priority	queue.	For	that,	we	can
implement	a	sorting	function	that	is	known	as	heap	sort.	It	is	one	of	the	most	efficient	and	used	sorting
mechanisms	in	computer	programming.	We	are	now	going	to	explore	that	in	the	next	section.

Using	heap	sort
Heap	sort	requires	us	to	build	a	heap	from	a	given	list	of	elements	and	then	continuously	checks	the	heap
property	so	that	the	whole	heap	remains	sorted	all	the	time.	Unlike	a	regular	heap	where	we	stop	checking
the	heap	property	once	the	newly	inserted	value	satisfies	the	conditions,	we	continue	to	do	so	for	the	next
elements	during	the	heap	sort	implementation.	The	pseudocode	of	the	heap	sort	looks	like	this:
Heapsort(A	as	array)	
BuildHeap(A)	
for	i	=	n-1	to	0	
swap(A[0],	A[i])	
n	=	n	-	1	
Heapify(A,	0)	

BuildHeap(A	as	array)	
n	=	elements_in(A)	
for	i	=	floor(n/2)	to	0	
Heapify(A,i)	

Heapify(A	as	array,	i	as	int)	
left	=	2i+1	
right	=	2i+2	
max	=	i	

if	(left	<=	n)	and	(A[left]	>	A[i])	
max	=	left	

if	(right<=n)	and	(A[right]	>	A[max])	
max	=	right	

if	(max	!=	i)	
swap(A[i],	A[max])	
Heapify(A,	max)

The	pseudocode	shows	that	whenever	we	are	trying	to	sort	a	list	of	elements,	the	start	process	depends	on
building	the	heap.	Each	time	we	add	an	item	to	the	heap,	we	check	if	that	satisfies	heap	properties	through
the	heapify	function.	Once	the	heap	is	built,	we	check	the	heap	properties	of	all	elements.	Let	us	now
implement	the	heap	sort	based	on	the	preceding	pseudocode:	function	heapSort(array	&$a)	{	
$length	=	count($a);	
buildHeap($a);	
$heapSize	=	$length	-	1;	
for	($i	=	$heapSize;	$i	>=	0;	$i--)	{	
$tmp	=	$a[0];	
$a[0]	=	$a[$heapSize];	
$a[$heapSize]	=	$tmp;	

$heapSize--;	
heapify($a,	0,	$heapSize);	
}	
}	

function	buildHeap(array	&$a)	{	
$length	=	count($a);	
$heapSize	=	$length	-	1;	
for	($i	=	($length	/	2);	$i	>=	0;	$i--)	{	
heapify($a,	$i,	$heapSize);	
}	
}	

function	heapify(array	&$a,	int	$i,	int	$heapSize)	{	
$largest	=	$i;	
$l	=	2	*	$i	+	1;	
$r	=	2	*	$i	+	2;	
if	($l	<=	$heapSize	&&	$a[$l]	>	$a[$i])	{	
$largest	=	$l;	
}	

if	($r	<=	$heapSize	&&	$a[$r]	>	$a[$largest])	{	
$largest	=	$r;	
}	

if	($largest	!=	$i)	{	
$tmp	=	$a[$i];	
$a[$i]	=	$a[$largest];	
$a[$largest]	=	$tmp;	
heapify($a,	$largest,	$heapSize);	
}	
}

Let	us	now	use	the	heapSort	function	to	sort	an	array.	Since	we	are	passing	the	argument	as	by	reference,
we	are	not	returning	anything	from	the	function.	The	actual	array	will	be	sorted	at	the	end	of	the	operation:
$numbers	=	[37,	44,	34,	65,	26,	86,	143,	129,	9];	
heapSort($numbers);	
echo	implode("\t",	$numbers);

If	we	run	this	code,	it	will	have	the	following	output	in	the	command	line:	9	26	34	37	44	65	86	129	143

If	we	want	to	change	the	sorting	to	descending	order,	we	just	need	to	change	the	comparison	in	the	heapify
function.	If	we	consider	time	and	space	complexity	for	the	heapSort	algorithm,	we	will	see	that	heap	sort
has	the	best	complexity	for	a	sorting	algorithm:

Best	time	complexity Ω(nlog(n))

Worst	time	complexity O	(nlog(n))

Average	time	complexity Θ(nlog(n))

Space	Complexity	(Worst	case) O(1)

Compared	to	merge	sort,	heap	sort	has	better	space	complexity.	As	a	result,	many	developers	prefer	heap
sort	for	sorting	lists	of	items.

Using	SplHeap,	SplMaxHeap,	and	SplMinHeap
If	we	do	not	want	to	implement	our	own	Heap	implementations,	we	can	use	the	built-in	heap	classes	from
the	Standard	PHP	Library	-	SPL.	SPL	has	three	different	implementations	for	the	heap.	One	for	generic
Heap,	which	is	SplHeap,	for	MaxHeap	we	have	SplMaxHeap,	and	for	MinHeap	we	have	SplMinHeap.	It	is	important	to
know	that	SPL	classes	are	not	considered	as	very	performant	while	running	on	PHP	7.	So	we	are	not
going	to	explore	in	details	about	them	here.	We	will	just	focus	on	a	sample	example	here	so	that	if	we	are
using	any	other	version	than	PHP	7,	we	can	use	those	built-in	classes.	Let	us	try	an	example	using
SplMaxHeap:

$numbers	=	[37,	44,	34,	65,	26,	86,	143,	129,	9];	

$heap	=	new	SplMaxHeap;	

foreach	($numbers	as	$number)	{	

				$heap->insert($number);	

}	

while	(!$heap->isEmpty())	{	

				echo	$heap->extract()	.	"\t";	

}

Since	we	have	used	max-heap,	we	are	expecting	the	output	to	be	in	descending	order.	Here	is	the	output
from	the	command	line:

143					129					86						65						44						37						34						26						9

If	we	want	to	sort	it	the	other	way	around,	we	can	use	SplMinHeap	for	that.

	

Summary
	

In	this	chapter,	we	have	learned	about	another	efficient	data	structure,	named	heap.	When	we	implement
priority	queues	using	a	heap,	they	are	considered	maximally	efficient	implementations.	We	have	also
learned	about	another	efficient	sorting	method	named	heap	sort,	which	can	be	achieved	through	a	heap
data	structure.	Here,	we	are	going	to	conclude	our	discussion	regarding	data	structures	for	this	book.	In
the	remaining	chapters,	we	are	going	to	focus	on	advanced	algorithms,	built-in	functions	for	algorithms,
and	data	structures,	along	with	functional	data	structures	at	the	end.	First,	we	are	going	to	explore	the
world	of	dynamic	programming	in	the	next	chapter.

	

	

	

Solving	Problems	with	Advanced	Techniques
	

We	have	explored	different	data	structures	and	algorithms	so	far	in	this	book.	We	are	yet	to	explore	some
of	the	most	exciting	areas	of	algorithms.	There	are	many	efficient	ways	of	doing	things	in	computer
programming.	We	will	focus	on	some	of	the	key	advanced	techniques	and	concepts	in	this	chapter.	These
topics	are	so	important	that	a	separate	book	could	be	written	about	them.	However,	we	will	keep	our
focus	on	the	very	basic	understanding	of	these	advanced	topics.	When	we	say	advanced	topics,	we	are
referring	to	memoization,	dynamic	programming,	greedy	algorithm,	backtracking,	puzzle	solving,	machine
learning,	and	so	on.	Let's	learn	some	new	and	exciting	topics	in	the	following	sections.

	

	

Memoization
Memoization	is	an	optimization	technique	where	we	the	store	results	of	previous	expensive	operations
and	use	them	without	repeating	the	operation.	It	helps	us	speed	up	the	solution	significantly.	When	we
have	problems	where	we	can	have	repetitive	sub	problems,	we	can	easily	apply	this	technique	to	store
those	results	and	use	them	later	on	without	repeating	the	steps.	Since	PHP	has	a	great	support	for
associative	arrays	and	dynamic	array	properties,	we	can	cache	the	results	without	any	problems.	One
thing	we	have	to	remember	is	that	though	we	are	saving	time	by	caching	the	results,	we	will	require	more
memory	to	store	these	results	in	the	cache.	So,	we	have	to	make	the	trade-off	between	space	and	memory.
Now,	let's	revisit	Chapter	5,	Applying	Recursive	Algorithms	-	Recursion,	for	our	recursive	example	of
generating	Fibonacci	numbers.	We	will	just	modify	that	function	with	a	counter	to	know	how	many	times
the	function	is	called	and	the	running	time	of	the	function	to	get	the	thirtieth	Fibonacci	number.	Here	is	the
code	for	this:

$start	Time	=	microtime();	

$count	=	0;

function	fibonacci(int	$n):	int	{	

				global	$count;	

				$count++;	

				if	($n	==	0)	{	

								return	1;	

				}	else	if	($n	==	1)	{	

								return	1;	

				}	else	{	

								return	fibonacci($n	-	1)	+	fibonacci($n	-	2);	

				}	

}	

echo	fibonacci(30)	.	"\n";	

echo	"Function	called:	"	.	$count	.	"\n";	

$endTime	=	microtime();	

echo	"time	="	.	($endTime	-	$startTime)	.	"\n";

This	will	have	the	following	output	in	the	command	line.	Note	that	timing	and	results	may	vary	from	one
system	to	the	other	or	from	one	version	of	PHP	to	the	other.	It	completely	depends	on	the	where	the
program	is	running:

1346269

Function	called:	2692537

time	=0.531349

The	first	number	1346269	is	the	thirtieth	Fibonacci	number,	and	the	next	line	shows	that	the	fibonacci
function	was	called	2692537	times	during	the	generation	of	the	thirtieth	number.	The	whole	process	took
0.5	seconds	(we	are	using	the	microtime	function	of	PHP).	If	we	were	generating	the	fiftieth	Fibonacci
number,	the	function	call	count	would	be	more	than	40	billion	times.	That	is	one	big	number.	However,
we	know	from	our	Fibonacci	formula	that	when	we	are	calculating	n.	We	are	doing	it	through	n-1	and	n-2;
those	are	already	calculated	in	the	previous	steps.	So,	we	are	repeating	the	steps,	and	hence,	it	is	costing
us	time	and	efficiency.	Now,	let's	store	the	Fibonacci	results	in	an	indexed	array,	and	we	will	check
whether	the	Fibonacci	number	we	are	looking	for	is	already	calculated	or	not.	If	it	is	calculated,	we	will
use	it;	otherwise,	we	will	calculate	that	and	store	the	result.	Here	is	the	modified	code	for	generating
Fibonacci	numbers	using	the	same	recursive	process,	but	with	help	of	memorization:

$startTime	=	microtime();	

$fibCache	=	[];	

$count	=	0;	

function	fibonacciMemoized(int	$n):	int	{	

				global	$fibCache;	

				global	$count;	

				$count++;	

				if	($n	==	0	||	$n	==	1)	{	

								return	1;	

				}	else	{

				if	(isset($fibCache[$n	-	1]))	{	

								$tmp	=	$fibCache[$n	-	1];	

				}	else	{

								$tmp	=	fibonacciMemoized($n	-	1);	

								$fibCache[$n	-	1]	=	$tmp;	

				}	

				if	(isset($fibCache[$n	-	2]))	{	

								$tmp1	=	$fibCache[$n	-	2];	

				}	else	{	

								$tmp1	=	fibonacciMemoized($n	-	2);	

								$fibCache[$n	-	2]	=	$tmp1;	

				}	

				return	$tmp	+	$tmp1;	

				}	

}	

echo	fibonacciMemoized(30)	.	"\n";	

echo	"Function	called:	"	.	$count	.	"\n";	

$endTime	=	microtime();	

echo	"time	="	.	($endTime	-	$startTime)	.	"\n";	

As	we	can	see	from	the	preceding	code,	we	have	introduced	a	new	global	variable	called	$fibCache,	which
will	store	the	calculated	Fibonacci	numbers.	We	also	check	whether	the	number	we	are	looking	for	is
already	in	the	array	or	not.	We	do	not	calculate	the	Fibonacci	if	the	number	is	already	stored	in	our	cache
array.	If	we	run	this	code	now,	we	will	see	the	following	output:

1346269

Function	called:	31

time	=5.299999999997E-5

Now,	let's	examine	the	result.	The	thirtieth	Fibonacci	number	is	the	same	as	we	had	the	last	time.
However,	look	at	the	function	call	count.	It	is	just	31	instead	of	2.7	million	calls.	Now,	let's	look	at	the
time.	We	have	taken	only	0.00005299	seconds,	which	is	10,000	times	faster	than	the	non-memoized
version.

With	a	simple	example,	we	can	see	that	we	can	optimize	our	solutions	by	utilizing	memoization	where	it
is	applicable.	One	thing	we	have	to	remember	is	that	memoization	will	work	better	where	we	have
repeating	sub	problems	or	where	we	have	to	consider	the	previous	calculation	to	compute	the	current	or
future	calculation.	Although	memoization	will	take	extra	space	to	store	the	partially	computed	data,
utilization	of	memoization	can	increase	performance	by	a	big	margin

Pattern	matching	algorithms
Pattern	matching	is	one	of	the	most	common	tasks	we	perform	on	a	day-to-day	basis.	PHP	has	built-in
support	for	regular	expression,	and	mostly,	we	rely	on	the	regular	expression	and	built-in	string	functions
to	solve	our	regular	needs	for	such	problems.	PHP	has	a	readymade	function	named	strops,	which	returns
the	position	of	the	first	occurrence	of	the	string	in	a	text.	Since	it	only	returns	the	position	of	the	first
occurrence,	we	can	try	to	write	a	function	that	will	return	all	possible	positions.	We	will	explore	the
brute-force	approach	first,	where	we	will	check	each	of	the	character	for	the	actual	string	with	each	one
of	the	pattern	string.	Here	is	the	function	that	will	do	the	job	for	us:	function	strFindAll(string	$pattern,
string	$txt):	array	{	
$M	=	strlen($pattern);	
$N	=	strlen($txt);	
$positions	=	[];	

for	($i	=	0;	$i	<=	$N	-	$M;	$i++)	{	
for	($j	=	0;	$j	<	$M;	$j++)	
if	($txt[$i	+	$j]	!=	$pattern[$j])	
break;	

if	($j	==	$M)	
$positions[]	=	$i;	
}

return	$positions;	
}

The	approach	is	very	straightforward.	We	start	from	position	0	of	the	actual	string	and	keep	on	going	until
the	$N-$M	position,	where	$M	is	the	length	of	the	pattern	we	are	looking	for.	We	do	not	need	to	search	the	full
string	even	at	the	worst	case	where	there	is	no	match	for	the	pattern.	Now,	let's	call	the	function	with
some	arguments:	$txt	=	"AABAACAADAABABBBAABAA";	
$pattern	=	"AABA";	
$matches	=	strFindAll($pattern,	$txt);	

if	($matches)	{	
foreach	($matches	as	$pos)	{	
echo	"Pattern	found	at	index	:	"	.	$pos	.	"\n";	
}	
}

This	will	produce	following	output:

Pattern	found	at	index	:	0

Pattern	found	at	index	:	9

Pattern	found	at	index	:	16

If	we	look	at	our	$txt	string,	we	can	find	that	there	are	tree	occurrences	of	our	pattern	AABA.	The	first	one	is

at	the	beginning,	second	one	is	at	the	center,	and	third	one	is	close	to	the	end	of	the	string.	The	algorithm
we	have	written	will	take	O((N	-	M)	*	M)	complexity,	where	N	is	the	length	of	the	text	and	M	is	the	length	of
the	pattern	we	are	searching	for.	If	we	want,	we	can	improve	the	efficiency	of	such	matching	using	a
popular	algorithm	known	as	Knuth-Morris-Pratt	(KMP)	string-matching	algorithm.

Implementing	Knuth-Morris-Pratt	algorithm
Knuth-Morris-Pratt	(KMP)	string-matching	algorithm	is	very	similar	to	the	naive	algorithm	we	just
implemented.	The	basic	difference	is	that	the	KMP	algorithm	uses	information	from	the	partial	matches
and	takes	a	decision	to	stop	matching	on	any	mismatch.	It	can	also	precompute	the	locations	where	the
pattern	can	exist	so	that	we	can	reduce	the	number	of	repeating	comparison	or	false	checks.	The	KMP
algorithm	pre-computes	a	table	that	helps	during	the	search	operation	and	increases	efficiency.	While
implementing	KMP	algorithm,	we	need	to	computer	the	Longest	Proper	Prefix	Suffix	(LPS).	Let's	check
the	function	to	generate	the	LPS	part:

function	ComputeLPS(string	$pattern,	array	&$lps)	{	

				$len	=	0;	

				$i	=	1;	

				$M	=	strlen($pattern);	

				$lps[0]	=	0;	

				while	($i	<	$M)	{	

				if	($pattern[$i]	==	$pattern[$len])	{	

								$len++;	

								$lps[$i]	=	$len;	

								$i++;	

				}	else	{	

								if	($len	!=	0)	{	

										$len	=	$lps[$len	-	1];	

								}	else	{	

										$lps[$i]	=	0;	

										$i++;	

								}	

				}	

				}	

}

For	our	pattern	from	the	previous	example	AABA,	the	LPS	will	be	[0,1,0,1];	now,	let's	write	the	KMP
implementation	for	our	string/pattern	search	problem:

function	KMPStringMatching(string	$str,	string	$pattern):	array	{	

				$matches	=	[];	

				$M	=	strlen($pattern);	

				$N	=	strlen($str);	

				$i	=	$j	=	0;	

				$lps	=	[];	

				ComputeLPS($pattern,	$lps);	

				while	($i	<	$N)	{	

				if	($pattern[$j]	==	$str[$i])	{	

								$j++;	

								$i++;	

				}	

				if	($j	==	$M)	{	

								array_push($matches,	$i	-	$j);	

								$j	=	$lps[$j	-	1];	

				}	else	if	($i	<	$N	&&	$pattern[$j]	!=	$str[$i])	{	

								if	($j	!=	0)	

								$j	=	$lps[$j	-	1];	

								else	

								$i	=	$i	+	1;	

				}	

				}	

				return	$matches;	

}	

The	preceding	code	is	the	implementation	of	the	KMP	algorithm.	Now,	let's	run	the	following	example

with	our	implemented	algorithm:

$txt	=	"AABAACAADAABABBBAABAA";	

$pattern	=	"AABA";	

$matches	=	KMPStringMatching($txt,	$pattern);	

if	($matches)	{	

				foreach	($matches	as	$pos)	{	

								echo	"Pattern	found	at	index	:	"	.	$pos	.	"\n";	

				}

}

This	will	produce	the	following	output:

Pattern	found	at	index	:	0

Pattern	found	at	index	:	9

Pattern	found	at	index	:	16

The	complexity	of	the	KMP	algorithm	is	O(N	+	M),	which	is	much	better	than	regular	pattern	matching.	Here,
O	(M)	is	for	computing	LPS	and	O	(N)	for	KMP	algorithm	itself.

There	are	many	detailed	descriptions	of	the	KMP	algorithm	that	can	be	found	online.

	

Greedy	algorithms
	

Though	the	name	is	greedy	algorithms,	actually,	it	is	a	programming	technique	that	focuses	on	finding	out
the	best	possible	solution	at	the	given	moment.	This	means	that	greedy	algorithm	makes	a	locally	optimal
choice	in	the	hope	that	it	will	lead	to	the	globally	optimal	solution.	One	thing	we	have	to	remember	is	that
not	all	greedy	approaches	will	take	us	to	globally	optimal	solutions.	However,	still,	greedy	algorithm	is
applied	in	many	problem-solving	areas.	One	of	the	most	popular	uses	of	greedy	algorithm	is	in	Huffman
encoding,	which	is	used	to	encode	a	big	text	and	compress	the	string	by	converting	them	into	different
codes.	We	will	explore	the	concept	and	implementation	of	Huffman	coding	in	the	next	section.

	

	

Implementing	Huffman	coding	algorithm
Huffman	coding	is	a	compression	technique	used	to	reduce	the	number	of	bits	required	to	send	or	store	a
message	or	string.	It	is	based	on	the	idea	that	frequently	appearing	characters	will	have	shorter	bit
representation,	and	less	frequent	characters	will	have	longer	bit	representation.	If	we	consider	the
Huffman	coding	as	a	tree	structure,	the	less	frequent	characters	or	items	will	be	at	the	top	part	of	the	tree
and	more	frequent	items	will	be	at	the	bottom	of	the	tree	or	in	the	leaf.	Huffman	encoding	relies	a	lot	on
the	priority	queue.	Huffman	encoding	can	be	computed	by	first	creating	a	tree	of	nodes.

Process	to	create	a	tree	of	nodes:

1.	 We	have	to	create	a	leaf	node	for	each	symbol	and	add	it	to	the	priority	queue.
2.	 While	there	is	more	than	one	node	in	the	queue,	do	the	following:

1.	Remove	the	node	of	highest	priority	(lowest	probability/frequency)	twice	to	get	two	nodes.

2.	Create	a	new	internal	node	with	these	two	nodes	as	children	and	with	probability/frequency
equal	to	the	sum	of	the	two	nodes'	probabilities/frequencies.

3.	Add	the	new	node	to	the	queue.

3.	 The	remaining	node	is	the	root	node,	and	the	tree	is	complete.

Then,	we	have	to	traverse	the	constructed	binary	tree	from	root	to	leaves	assigning	and	accumulating	a	"0"
for	one	branch	and	a	"1"	for	the	other	at	each	node.	The	accumulated	zeros	and	ones	at	each	leaf	constitute
a	Huffman	encoding	for	those	symbols	and	weights.	Here	is	an	implementation	of	Huffman	encoding
algorithm	using	the	SPL	priority	queue:

function	huffmanEncode(array	$symbols):	array	{	

				$heap	=	new	SplPriorityQueue;	

				$heap->setExtractFlags(SplPriorityQueue::EXTR_BOTH);	

				foreach	($symbols	as	$symbol	=>	$weight)	{	

								$heap->insert(array($symbol	=>	''),	-$weight);	

				}	

				while	($heap->count()	>	1)	{	

				$low	=	$heap->extract();	

				$high	=	$heap->extract();	

				foreach	($low['data']	as	&$x)	

								$x	=	'0'	.	$x;	

				foreach	($high['data']	as	&$x)	

								$x	=	'1'	.	$x;	

				$heap->insert($low['data']	+	$high['data'],		

												$low['priority']	+	$high['priority']);	

				}	

				$result	=	$heap->extract();	

				return	$result['data'];	

}	

Here,	we	are	building	a	min	heap	for	each	of	the	symbols	and	using	their	weight	to	set	the	priority.	Once
the	heap	is	constructed,	we	extract	two	nodes	one	after	another	and	combining	their	data	and	priority	to
add	them	back	to	the	heap.	This	continues	unless	only	one	node	exists,	which	is	the	root	node.	Now,	let's
run	the	following	code	to	generate	the	Huffman	code:

$txt	=	'PHP	7	Data	structures	and	Algorithms';	

$symbols	=	array_count_values(str_split($txt));	

$codes	=	huffmanEncode($symbols);	

echo	"Symbol\t\tWeight\t\tHuffman	Code\n";	

foreach	($codes	as	$sym	=>	$code)	{	

				echo	"$sym\t\t$symbols[$sym]\t\t$code\n";	

}	

Here,	we	are	using	str_split	to	break	the	string	into	an	array	and	then	using	array	count	values	to	convert	it
into	an	associative	array	where	the	character	will	be	the	key	and	its	number	of	appearance	in	the	string
will	be	the	value.	The	preceding	code	will	produce	the	following	output:

Symbol										Weight										Huffman	Code

i															1															00000

D															1															00001

d															1															00010

A															1															00011

t															4															001

H															1															01000

m															1															01001

P															2															0101

g															1															01100

o															1															01101

e															1															01110

n															1															01111

7															1															10000

l															1															10001

u															2															1001

																5															101

h															1															11000

c															1															11001

a															3															1101

r															3															1110

s															3															1111

There	are	many	other	practical	usages	of	greedy	algorithms.	We	will	solve	a	job-scheduling	problem	with
greedy	algorithms.	Let's	consider	an	example	of	a	team	of	agile	software	developers	who	are	working	in
a	two-week	iteration	or	sprint.	They	have	some	user	stories	to	complete	with	some	deadlines	(by	date)
for	the	tasks	and	velocity	(size	of	the	story)	attached	to	the	story.	The	target	for	the	team	is	to	gain
maximum	velocity	for	the	sprint	within	the	given	deadline.	Let's	consider	the	following	tasks	with
deadline	and	velocity:

Index 1 2 3 4 5 6

Story S1 S2 S3 S4 S5 S6

Deadline 2 1 2 1 3 4

Velocity 95 32 47 42 28 64

As	we	can	see	from	the	preceding	table,	we	have	six	user	stories,	and	they	have	four	different	deadlines
from	1	to	4.	We	have	to	finish	the	user	story	S2	or	S4	for	slot	1	since	the	deadline	for	the	task	is	1.	The
same	goes	for	story	S1	and	S3,	and	they	have	to	be	finished	on	or	before	slot	2.	However,	since	we	have

S3	and	the	velocity	of	S3	is	bigger	than	S2	and	S4,	S3	will	be	chosen	for	slot	1	by	the	greedy	approach.
Let's	write	the	greedy	code	for	our	velocity	calculation:

function	velocityMagnifier(array	$jobs)	{	

					$n	=	count($jobs);	

				usort($jobs,	function($opt1,	$opt2)	{	

								return	$opt1['velocity']	<	$opt2['velocity'];	

				});	

				$dMax	=	max(array_column($jobs,	"deadline"));	

				$slot	=	array_fill(1,	$dMax,	-1);	

				$filledTimeSlot	=	0;	

				for	($i	=	0;	$i	<	$n;	$i++)	{	

				$k	=	min($dMax,	$jobs[$i]['deadline']);	

				while	($k	>=	1)	{	

								if	($slot[$k]	==	-1)	{	

										$slot[$k]	=	$i;	

										$filledTimeSlot++;	

										break;	

								}	

								$k--;	

				}	

						if	($filledTimeSlot	==	$dMax)	{	

										break;	

						}	

				}	

				echo("Stories	to	Complete:	");	

				for	($i	=	1;	$i	<=	$dMax;	$i++)	{	

								echo	$jobs[$slot[$i]]['id'];	

								if	($i	<	$dMax)	{	

												echo	"\t";	

								}	

				}	

				$maxVelocity	=	0;	

				for	($i	=	1;	$i	<=	$dMax;	$i++)	{	

								$maxVelocity	+=	$jobs[$slot[$i]]['velocity'];	

				}	

				echo	"\nMax	Velocity:	"	.	$maxVelocity;	

}	

Here,	we	are	getting	the	list	of	jobs	(user	story	ID,	deadline,	and	velocity)	that	we	will	use	to	find	the
maximum	velocity	and	their	respective	user	story	ID.	First,	we	sort	the	jobs	array	with	custom	user	sort
function	usort	and	sort	the	array	in	the	descending	order	based	on	their	velocity.	After	that,	we	calculate
the	maximum	number	of	slots	available	from	the	deadline	column.	We	are	then	initializing	the	slot	array	to
-1	to	keep	a	flag	of	used	slots.	The	next	code	block	is	to	traverse	through	each	of	the	user	stories	and	find
a	proper	slot	for	the	user	story.	If	the	available	timeslots	are	filled,	we	don't	continue	further.	Now,	let's
run	this	code	using	the	following	code	block:

$jobs	=	[

				["id"	=>	"S1",	"deadline"	=>	2,	"velocity"	=>	95],	

				["id"	=>	"S2",	"deadline"	=>	1,	"velocity"	=>	32],	

				["id"	=>	"S3",	"deadline"	=>	2,	"velocity"	=>	47],	

				["id"	=>	"S4",	"deadline"	=>	1,	"velocity"	=>	42],	

				["id"	=>	"S5",	"deadline"	=>	3,	"velocity"	=>	28],	

				["id"	=>	"S6",	"deadline"	=>	4,	"velocity"	=>	64]	

];	

velocityMagnifier($jobs);	

This	will	produce	the	following	output	in	command	line:

Stories	to	Complete:	S3				S1				S5				S6

Max	Velocity:	234

Greedy	algorithms	can	be	helpful	in	solving	locally	optimized	problems	such	as	job	scheduling,	network
traffic	control,	graph	algorithm,	among	other	things.	However,	to	get	a	globally	optimized	solution,	we
need	to	focus	on	another	aspect	of	algorithms,	which	is	known	as	dynamic	programming.

Understanding	dynamic	programming
Dynamic	programming	is	a	way	of	solving	complex	problems	by	dividing	them	into	smaller	sub	problems
and	finding	solution	for	those	sub	problems.	We	accumulate	the	solutions	of	sub	problems	to	find	the
global	solution.	The	good	part	of	dynamic	programming	is	that	we	reduce	the	recalculation	of	sub
problems	by	storing	their	results.	Dynamic	programming	is	a	very	well-known	method	for	optimization.
The	use	of	dynamic	algorithm	can	be	found	everywhere	in	the	programming	world.	Dynamic	programming
can	solve	problems	such	as	coin	changing,	finding	the	longest	common	subsequence,	finding	the	longest
increasing	sequences,	sequencing	DNA	strings,	and	so	on.	The	core	difference	between	the	greedy
algorithm	and	dynamic	programming	is	that	dynamic	programming	will	always	prefer	a	globally
optimized	solution.

We	can	solve	a	problem	with	dynamic	programming	if	the	problem	has	either	optimal	substructure	or
overlapping	sub	problems.	Optimal	substructure	means	that	the	optimization	for	the	actual	problem	can	be
solved	using	a	combination	of	optimal	solution	of	its	sub	problems.	In	other	words,	if	a	problem	is
optimized	for	n,	it	will	be	optimized	for	any	size	less	than	n	or	more	than	n.	The	overlapping	sub
problems	indicates	that	smaller	sub	problems	will	be	solved	over	and	over	again	as	they	are	overlapping
with	each	other.	Fibonacci	series	is	a	great	example	for	overlapping	sub	problems.	So,	having	basic
recursion	here	will	not	help	at	all.	Dynamic	programming	solves	each	subproblem	exactly	once	and	does
not	attempt	to	resolve	any	further.	It	is	achieved	either	via	a	top-down	approach	or	a	bottom-up	approach.

In	a	top-down	approach,	we	start	with	a	bigger	problem	and	recursively	solve	the	smaller	sub	problems.
However,	we	have	to	use	the	memoization	technique	to	store	the	subproblem	results	so	that	we	do	not
have	to	recalculate	that	subproblem	in	future.	In	the	bottom-up	approach,	we	solve	the	smallest
subproblem	first	and	then	move	to	the	other	smaller	sub	problems.	Usually,	subproblem	results	are	stored
in	a	tabular	format	using	a	multidimensional	array	for	bottom-up	approach.

Now,	we	will	explore	some	examples	from	the	dynamic	programming	world.	Some	might	sound	very
familiar	from	our	day-to-day	programming	problems.	We	will	get	started	with	the	famous	knapsack
problem.

0	-	1	knapsack
A	knapsack	is	a	bag	with	straps,	usually	carried	by	soldiers	to	help	them	take	their	necessary	items	or
valuables	during	their	journey.	Each	item	has	a	value	and	definite	weight	attached	to	it.	So,	the	soldier	has
to	pick	the	most	valuable	items	within	their	maximum	weight	limit	as	they	cannot	put	everything	in	their
bag.	The	word	0/1	means	that	either	we	can	take	it	or	leave	it.	We	cannot	take	an	item	partially.	This	is
known	as	the	famous	0-1	knapsack	problem.	We	will	take	the	bottom-up	approach	for	solving	the	0-1
knapsack	problem.	Here	is	the	pseudocode	for	the	solution:	Procedure	knapsack(n,	W,	w1,...,wN,
v1,...,vN)	
for	w	=	0	to	W	
M[0,	w]	=	0	

for	i	=	1	to	n	
for	w	=	0	to	W	

if	wi	>	w	:	
M[i,	w]	=	M[i-1,	w]	
else	:	
M[i,	w]	=	max	(M[i-1,	w],	vi	+	M[i-1,	w-wi])	
return	M[n,	W]	

end	procedure

For	example,	if	we	have	five	items,	[1,2,3,4,5],	and	they	have	the	weight	of	10,20,30,40,50,	respectively,	a
maximum	allowed	weight	of	10	will	produce	the	following	table	using	the	bottom-up	approach:

As	we	can	see,	we	build	the	up	the	table	bottom	up	where	we	start	with	one	item	and	one	weight	and
increase	it	to	our	desired	weight	and	maximize	the	value	count	by	choosing	the	best	possible	items.	At	the
end,	the	last	cell	in	the	bottom-right	corner	is	the	one	with	the	expected	result	for	the	0-1	knapsack
problem.	Here	is	the	implementation	and	code	to	run	the	function:	function	knapSack(int	$maxWeight,
array	$weights,	array	$values,	int	$n)	{	
$DP	=	[];	
for	($i	=	0;	$i	<=	$n;	$i++)	{	
for	($w	=	0;	$w	<=	$maxWeight;	$w++)	{	
if	($i	==	0	||	$w	==	0)	
$DP[$i][$w]	=	0;	

else	if	($weights[$i	-	1]	<=	$w)	
$DP[$i][$w]	=	
max($values[$i-1]+$DP[$i	-	1][$w	-	$weights[$i-1]]	
,	$DP[$i	-	1][$w]);	
else	
$DP[$i][$w]	=	$DP[$i	-	1][$w];	
}	
}	
return	$DP[$n][$maxWeight];	
}	

$values	=	[10,	20,	30,	40,	50];	
$weights	=	[1,	2,	3,	4,	5];	
$maxWeight	=	10;	
$n	=	count($values);	
echo	knapSack($maxWeight,	$weights,	$values,	$n);

This	will	show	100	on	the	command	line,	which	actually	matches	our	expected	result	from	the	preceding
table.	The	complexity	of	this	algorithm	is	O	(n*W),	where	n	is	the	number	of	items	and	W	is	the	target
weight.

Finding	the	longest	common	subsequence-LCS
Another	very	popular	algorithm	to	solve	using	dynamic	programming	is	finding	the	longest	common
subsequence,	or	LCS,	between	two	strings.	The	process	is	very	similar	to	the	knapsack	solution	where	we
had	a	two-dimensional	table	and	we	started	with	one	weight	to	move	to	our	target	weight.	Here,	we	will
start	with	the	first	character	of	the	first	string	and	move	across	the	whole	string	for	the	second	string	to
match	the	characters.	We	will	continue	this	until	all	the	characters	of	the	first	string	are	matched	with
individual	characters	of	the	second	string.	So,	when	we	find	a	match,	we	consider	the	top-left	corner	cell
or	diagonally	left	cell	of	the	matched	cell.	Let's	consider	the	following	two	tables	to	understand	how	the
matching	occurs:

A B

0 0 0

C 0 0 0

B 0 0 1

B D

0 0 0

B 0 1 1

D 0 1 2

On	the	left	table,	we	have	two	strings	AB	and	CB.	When	B	matches	B	in	the	table,	the	value	of	the
matched	cell	will	be	the	value	of	its	diagonal	cell	plus	one.	That	is	why	the	dark	background	cell	of	the
first	table	has	a	value	of	1	since	the	diagonally	left	cell	has	a	value	of	0.	For	the	same	reason,	the	table	on
the	right	has	right	lowest	cell	of	value	2	as	the	diagonal	cell	has	a	value	of	1.	Here	is	the	pseudocode	for
finding	the	LCS	length:

function	LCSLength(X[1..m],	Y[1..n])	

				C	=	array[m][n]	

				for	i	:=	0..m	

							C[i,0]	=	0	

				for	j	:=	0..n	

							C[0,j]	=	0	

				for	i	:=	1..m	

								for	j	:=	1..n	

												if(i	=	0	or	j	=	0)	

																C[i,j]	:=	0	

												else	if	X[i]	=	Y[j]	

																C[i,j]	:=	C[i-1,j-1]	+	1	

												else	

																C[i,j]	:=	max(C[i,j-1],	C[i-1,j])	

				return	C[m,n]	

Here	is	the	implementation	of	our	pseudocode	to	find	the	LCS	length:

function	LCS(string	$X,	string	$Y):	int	{	

				$M	=	strlen($X);	

				$N	=	strlen($Y);	

				$L	=	[];	

				for	($i	=	0;	$i	<=	$M;	$i++)	

						$L[$i][0]	=	0;	

				for	($j	=	0;	$j	<=	$N;	$j++)	

						$L[0][$j]	=	0;	

				for	($i	=	0;	$i	<=	$M;	$i++)	{	

						for	($j	=	0;	$j	<=	$N;	$j++)	{									

										if($i	==	0	||	$j	==	0)	

										$L[$i][$j]	=	0;	

										else	if	($X[$i	-	1]	==	$Y[$j	-	1])	

										$L[$i][$j]	=	$L[$i	-	1][$j	-	1]	+	1;	

										else	

										$L[$i][$j]	=	max($L[$i	-	1][$j],	$L[$i][$j	-	1]);	

						}	

				}	

				return	$L[$M][$N];	

}	

Now,	let's	run	the	LCS	function	with	two	strings	to	see	whether	we	can	find	the	longest	common
subsequence:

$X	=	"AGGTAB";	

$Y	=	"GGTXAYB";	

echo	"LCS	Length:".LCS($X,	$Y);	

This	will	produce	the	output	LCS	Length:5	in	the	command	line.	This	seems	to	be	correct	as	both	the	strings
have	GGTAB	as	the	common	subsequence.

DNA	sequencing	using	dynamic	programming
We	have	just	seen	how	to	find	the	longest	common	subsequence.	Using	the	same	principle,	we	can
implement	DNA	or	protein	sequencing,	which	can	be	very	helpful	for	us	in	solving	bioinformatic
problems.	For	alignment	purpose,	we	will	use	the	most	popular	algorithm	known	as	the	Needleman-
Wunsch	algorithm.	It	is	similar	to	our	LCS	algorithm,	but	the	scoring	system	is	different.	Here,	we	score	a
match,	mismatch,	and	gap	in	a	different	scoring	system.	There	are	two	parts	of	the	algorithm:	one	to
calculate	the	matrix	with	possible	sequence	and	the	second	part	is	tracking	back	the	actual	sequence	with
the	best	possible	one.	The	Needleman-Wunsch	algorithm	provides	the	best	global	alignment	solution	for
any	given	sequence.	Since	the	algorithm	itself	is	little	bigger	along	with	the	scoring	system	explanation,
which	we	can	find	in	many	websites	or	books,	we	want	to	keep	our	focus	on	the	implementation	part	of
the	algorithm.	We	will	divide	the	problem	into	two	parts.	First,	we	will	generate	the	computational	table
using	dynamic	programming,	and	then,	we	will	track	it	backwards	to	generate	the	actual	sequence
alignment.	For	our	implementation,	we	will	use	1	for	matching,	and	-1	for	gap	penalty	and	mismatch
score.	Here	is	the	first	part	of	our	implementation:

define("GC",	"-");	

define("SP",	1);	

define("GP",	-1);	

define("MS",	-1);	

function	NWSquencing(string	$s1,	string	$s2)	{	

				$grid	=	[];	

				$M	=	strlen($s1);	

				$N	=	strlen($s2);	

				for	($i	=	0;	$i	<=	$N;	$i++)	{	

				$grid[$i]	=	[];	

						for	($j	=	0;	$j	<=	$M;	$j++)	{	

										$grid[$i][$j]	=	null;	

						}	

				}	

				$grid[0][0]	=	0;	

				for	($i	=	1;	$i	<=	$M;	$i++)	{	

								$grid[0][$i]	=	-1	*	$i;	

				}	

				for	($i	=	1;	$i	<=	$N;	$i++)	{	

								$grid[$i][0]	=	-1	*	$i;	

				}	

				for	($i	=	1;	$i	<=	$N;	$i++)	{	

						for	($j	=	1;	$j	<=	$M;	$j++)	{	

										$grid[$i][$j]	=	max(

												$grid[$i	-	1][$j	-	1]	+	($s2[$i	-	1]	===	$s1[$j	-	1]	?	SP	:	

														MS),	$grid[$i	-	1][$j]	+	GP,	$grid[$i][$j	-	1]	+	GP	

);	

						}	

				}	

				printSequence($grid,	$s1,	$s2,	$M,	$N);	

}	

Here,	we	have	created	a	two-dimensional	array	of	size	M,N,	where	M	is	the	size	of	string	#1	and	N	is	the
size	of	string	#2.	We	initialized	the	first	row	and	column	of	the	grid	to	a	negative	value	in	the	decreasing
order.	We	multiplied	the	index	with	a	gap	penalty	to	achieve	this	behavior.	Here,	our	constant	SP
indicates	the	matching	score	point,	MS	for	mismatch	score,	GP	for	gap	penalty,	and	GC	indicates	the	Gap
Character,	which	we	will	use	during	sequence	printing.	At	the	end	of	dynamic	programming,	the	matrix

will	be	generated.	Let's	consider	the	following	two	strings:

$X	=	"GAATTCAGTTA";	

$Y	=	"GGATCGA";	

Then,	our	table	will	look	like	this	after	running	the	Needleman	algorithm:

G A A T T C A G T T A

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

G -1 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

G -2 0 0 -1 -2 -3 -4 -5 -4 -5 -6 -7

A -3 -1 1 1 0 -1 -2 -3 -4 -5 -6 -5

T -4 -2 0 0 2 1 0 -1 -2 -3 -4 -5

C -5 -3 -1 -1 1 1 2 1 0 -1 -2 -3

G -6 -4 -2 -2 0 0 1 1 2 1 0 -1

A -7 -5 -3 -1 -1 -1 0 2 1 1 0 1

Now,	using	this	scoring	table,	we	can	find	out	the	actual	sequence.	Here,	we	will	start	from	the	bottom-
right	cell	in	the	table	and	consider	the	top	cell,	left	cell,	and	the	diagonal	cell	values.	If	the	max	value
among	the	three	cells	is	the	top	one,	then	the	top	string	requires	an	insertion	of	gap	character	(-).	If	the
maximum	value	is	the	diagonal	one,	then	there	is	a	better	chance	of	matching.	So,	we	can	compare	the	two
characters	of	the	two	strings,	and	if	they	match,	then	we	can	put	a	bar	or	pipe	character	to	show	the
alignment.	Here	is	what	the	sequencing	function	will	look	like:

function	printSequence($grid,	$s1,	$s2,	$j,	$i)	{	

				$sq1	=	[];	

				$sq2	=	[];	

				$sq3	=	[];	

				do	{	

				$t	=	$grid[$i	-	1][$j];	

				$d	=	$grid[$i	-	1][$j	-	1];	

				$l	=	$grid[$i][$j	-	1];	

				$max	=	max($t,	$d,	$l);	

				switch	($max)	{	

								case	$d:	

								$j--;	

								$i--;	

										array_push($sq1,	$s1[$j]);	

										array_push($sq2,	$s2[$i]);	

										if	($s1[$j]	==	$s2[$i])	

														array_push($sq3,	"|");	

										else	

														array_push($sq3,	"	");	

								break;	

								case	$t:	

								$i--;	

										array_push($sq1,	GC);	

										array_push($sq2,	$s2[$i]);	

										array_push($sq3,	"	");	

								break;	

								case	$l:	

										$j--;	

										array_push($sq1,	$s1[$j]);	

										array_push($sq2,	GC);	

										array_push($sq3,	"	");	

								break;	

				}	

				}	while	($i	>	0	&&	$j	>	0);	

				echo	implode("",	array_reverse($sq1))	.	"\n";	

				echo	implode("",	array_reverse($sq3))	.	"\n";	

				echo	implode("",	array_reverse($sq2))	.	"\n";	

}	

Since	we	are	starting	from	back	and	slowly	moving	to	the	front,	we	are	using	array	push	to	keep	the
alignment	in	order.	Then,	we	are	printing	the	array	by	reversing	it.	The	complexity	of	the	algorithm	is	O
(M	*	N).	Here	is	the	output	if	we	call	NWSquencing	for	our	two	strings	$X	and	$Y:

G-AATTCAGTTA

|	|	|	|	|		|

GGA-T-C-G--A

Backtracking	to	solve	puzzle	problem
Backtracking	is	a	recursive	algorithm	strategy	where	we	backtrack	when	a	result	is	not	found	and	continue
search	for	solution	in	other	possible	ways.	Backtracking	is	a	popular	way	to	solve	many	famous
problems,	especially	chess,	Sudoku,	crosswords,	and	so	on.	Since	recursion	is	the	key	component	of
backtracking,	we	need	to	ensure	that	our	problem	can	be	divided	into	sub	problems,	and	we	apply
recursion	into	those	sub	problems.	In	this	section,	we	will	solve	one	of	the	most	popular	games,	Sudoku,
using	backtracking.

In	Sudoku,	we	have	a	partially	filled	box	with	nice	boxes	of	size	3X3.	The	rule	of	the	game	is	to	place	a
number	1	to	9	in	each	cell,	where	the	same	number	cannot	exist	in	the	same	row	or	column.	So,	in	the	9X9
cell,	each	number	1	to	9	will	be	present	only	once	for	each	row	and	each	column:

7 3 8

2 5

4 9 6 1

4 3 2 1

1 5

5 8 6 7

5 1 8 9

5 3

2 9 5

For	example,	in	the	preceding	Sudoku	board,	the	first	column	has	4,	1,	5	and	the	first	row	have	7,	3,	8.	As
a	result,	we	cannot	use	any	of	these	six	numbers	in	the	first	empty	cell	on	the	top	left.	So,	the	possible
numbers	can	be	2,	6,	and	9.	We	do	not	know	which	one	of	these	numbers	will	satisfy	the	solution.	We	can
pick	two	and	put	in	the	first	cell	and	then	start	looking	for	values	for	the	remaining	empty	cells.	This	will
continue	until	all	the	cells	are	filled	up	or	still	there	is	a	way	to	place	a	number	in	the	empty	cell	without

violating	the	game	principle.	If	no	solution	is	possible,	we	will	backtrack	and	come	back	to	2	again,
replace	it	with	the	next	possible	option	6,	and	run	the	same	recursive	way	of	finding	numbers	for	other
empty	cells.	This	continues	until	the	board	is	solved.	Let's	write	some	recursive	code	to	solve	the
Sudoku:

define("N",	9);	

define("UNASSIGNED",	0);	

function	FindUnassignedLocation(array	&$grid,	int	&$row,		

int	&$col):	bool	{	

				for	($row	=	0;	$row	<	N;	$row++)	

						for	($col	=	0;	$col	<	N;	$col++)	

										if	($grid[$row][$col]	==	UNASSIGNED)	

										return	true;	

				return	false;	

}	

function	UsedInRow(array	&$grid,	int	$row,	int	$num):	bool	{	

				return	in_array($num,	$grid[$row]);	

}	

function	UsedInColumn(array	&$grid,	int	$col,	int	$num):	bool	{	

				return	in_array($num,	array_column($grid,	$col));	

}	

function	UsedInBox(array	&$grid,	int	$boxStartRow,		

int	$boxStartCol,	int	$num):	bool	{	

				for	($row	=	0;	$row	<	3;	$row++)	

				for	($col	=	0;	$col	<	3;	$col++)	

if	($grid[$row	+	$boxStartRow][$col	+	$boxStartCol]	==	$num)	

								return	true;	

				return	false;	

}	

function	isSafe(array	$grid,	int	$row,	int	$col,	int	$num):	bool	{	

				return	!UsedInRow($grid,	$row,	$num)	&&	

								!UsedInColumn($grid,	$col,	$num)	&&	

								!UsedInBox($grid,	$row	-	$row	%	3,	$col	-	$col	%	3,	$num);	

}	

Here,	we	can	see	all	the	auxiliary	functions	required	to	implement	the	Sudoku	function.	First,	we	defined	the
max	size	of	the	grid	along	with	the	unassigned	cell	indicator,	which	is	0	in	this	case.	The	first	function	we
have	is	to	find	any	unassigned	location	in	the	9	X	9	grid,	starting	from	the	top-left	corner	cell,	and	search
the	empty	cell	row	wise.	Then,	we	have	three	functions	to	check	whether	a	number	is	used	in	a	particular
row	or	column	or	a	3	X	3	box.	If	the	number	is	not	used	in	the	row,	column,	or	in	the	box,	we	can	use	it
for	a	possible	value	in	the	cell,	and	that	is	why,	we	are	returning	true	in	the	isSafe	function	check.	If	it	is
used	in	any	one	of	these	places,	the	function	will	return	false.	Now,	we	are	ready	to	implement	the
recursive	function	for	solving	the	Sudoku:

function	SolveSudoku(array	&$grid):	bool	{	

				$row	=	$col	=	0;	

				if	(!FindUnassignedLocation($grid,	$row,	$col))	

								return	true;	//	success!	no	empty	space	

				for	($num	=	1;	$num	<=	N;	$num++)	{	

						if	(isSafe($grid,	$row,	$col,	$num))	{	

										$grid[$row][$col]	=	$num;	//	make	assignment	

										if	(SolveSudoku($grid))	

										return	true;		//	return,	if	success	

										$grid[$row][$col]	=	UNASSIGNED;		//	failure	

						}	

				}	

				return	false;	//	triggers	backtracking	

}	

function	printGrid(array	$grid)	{	

				foreach	($grid	as	$row)	{	

								echo	implode("",	$row)	.	"\n";	

				}	

}

The	SolveSudoku	function	is	self-explanatory.	Here,	we	visited	one	cell,	and	if	the	cell	is	empty,	put	a
temporary	number,	any	number	from	1	to	9,	in	the	cell.	Then,	we	checked	whether	the	number	is	redundant
in	the	row	or	in	the	column	or	in	the	3	X	3	matrix.	If	it	does	not	conflict,	we	keep	the	number	in	the	cell
and	move	to	the	next	empty	cell.	We	do	this	via	recursion	so	that	if	required,	we	can	track	back	and
change	the	value	in	the	case	of	a	conflict.	This	continues	until	a	solution	is	found.	We	also	have	added	a
printGrid	function	to	print	a	given	grid	in	the	command	line.	Let's	now	run	the	code	with	the	sample	Sudoku
matrix	we	have	used	in	this	example:

$grid	=	[

				[0,	0,	7,	0,	3,	0,	8,	0,	0],	

				[0,	0,	0,	2,	0,	5,	0,	0,	0],	

				[4,	0,	0,	9,	0,	6,	0,	0,	1],	

				[0,	4,	3,	0,	0,	0,	2,	1,	0],	

				[1,	0,	0,	0,	0,	0,	0,	0,	5],	

				[0,	5,	8,	0,	0,	0,	6,	7,	0],	

				[5,	0,	0,	1,	0,	8,	0,	0,	9],	

				[0,	0,	0,	5,	0,	3,	0,	0,	0],	

				[0,	0,	2,	0,	9,	0,	5,	0,	0]	

];	

if	(SolveSudoku($grid)	==	true)	

				printGrid($grid);	

else	

				echo	"No	solution	exists";	

We	have	used	a	two-dimensional	array	to	represent	our	Sudoku	matrix.	If	we	run	the	code,	it	will	produce
following	output	in	the	command	line:

297431856

361285497

485976321

743659218

126847935

958312674

534128769

879563142

612794583

Alternatively,	if	we	present	that	in	a	nice	Sudoku	matrix,	it	will	look	like	this:

2 9 7 4 3 1 8 5 6

3 6 1 2 8 5 4 9 7

4 8 5 9 7 6 3 2 1

7 4 3 6 5 9 2 1 8

1 2 6 8 4 7 9 3 5

9 5 8 3 1 2 6 7 4

5 3 4 1 2 8 7 6 9

8 7 9 5 6 3 1 4 2

6 1 2 7 9 4 5 8 3

Backtracking	can	be	very	useful	to	find	solutions	to	find	path	or	solve	game	problems.	There	are	many
references	available	online	for	backtracking,	which	can	be	very	useful	to	us.

Collaborative	filtering	recommendation	system
Recommendation	systems	are	used	everywhere	in	the	Internet	today.	From	e-commerce	sites	to
restaurants,	hotels,	tickets,	events,	and	so	on.	are	recommended	to	us	everywhere.	Have	we	ever	asked
ourselves	how	do	they	know	what	will	be	the	best	for	us?	How	do	they	come	up	with	this	calculation	of
showing	the	items	we	might	like?	The	answer	is	most	sites	use	collaborative	filtering	(CF)	to	recommend
something.	Collaborative	filtering	is	a	process	of	making	automatic	prediction	(filtering)	about	the
interests	of	a	user	by	analyzing	other	user's	choices	or	preferences	(collaborative).	We	will	build	a
simple	recommendation	system	using	the	Pearson	correlation	method	where	a	similarity	score	between
two	people	is	calculated	on	the	range	of	-1	to	+1.	If	the	similarity	score	is	+1,	then	it	means	two	people
are	a	perfect	match.	If	the	similarity	score	is	0,	then	it	means	no	there	is	no	similarity	between	them,	and	if
the	score	is	-1,	then	they	are	negatively	similar.	Usually,	the	scores	are	mostly	fractional.

The	Pearson	correlation	is	calculated	using	the	following	formula:

Here,	x	denotes	preferences	from	person	one,	y	represents	preferences	from	person	two,	and	N	represents
the	number	of	items	in	the	preferences,	which	are	common	between	x	and	y.	Let's	now	implement	a
sample	review	system	for	restaurants	in	Dhaka.	There	are	reviewers	who	have	reviewed	some
restaurants.	Some	of	them	are	common,	some	are	not.	Our	job	will	be	to	find	a	recommendation	for
person	X	based	on	the	reviews	of	others.	Our	reviews	look	like	this:

$reviews	=	[];	

$reviews['Adiyan']	=	["McDonalds"	=>	5,	"KFC"	=>	5,	"Pizza	Hut"	=>	4.5,	"Burger	King"	=>	4.7,	"American	Burger"	=>	3.5,	"Pizza	Roma"	=>	2.5];	

$reviews['Mikhael']	=	["McDonalds"	=>	3,	"KFC"	=>	4,	"Pizza	Hut"	=>	3.5,	"Burger	King"	=>	4,	"American	Burger"	=>	4,	"Jafran"	=>	4];	

$reviews['Zayeed']	=	["McDonalds"	=>	5,	"KFC"	=>	4,	"Pizza	Hut"	=>	2.5,	"Burger	King"	=>	4.5,	"American	Burger"	=>	3.5,	"Sbarro"	=>	2];	

$reviews['Arush']	=	["KFC"	=>	4.5,	"Pizza	Hut"	=>	3,	"Burger	King"	=>	4,	"American	Burger"	=>	3,	"Jafran"	=>	2.5,	"FFC"	=>	3.5];	

$reviews['Tajwar']	=	["Burger	King"	=>	3,	"American	Burger"	=>	2,	"KFC"	=>	2.5,	"Pizza	Hut"	=>	3,	"Pizza	Roma"	=>	2.5,	"FFC"	=>	3];	

$reviews['Aayan']	=	["KFC"	=>	5,	"Pizza	Hut"	=>	4,	"Pizza	Roma"	=>	4.5,	"FFC"	=>	4];	

Now,	based	on	the	structure,	we	can	write	our	Pearson	correlation	calculation	between	two	reviewers.
Here	is	the	implementation:

function	pearsonScore(array	$reviews,	string	$person1,	string	$person2):	float	{	

$commonItems	=	array();	

foreach	($reviews[$person1]	as	$restaurant1	=>	$rating)	{	

				foreach	($reviews[$person2]	as	$restaurant2	=>	$rating)	{	

								if	($restaurant1	==	$restaurant2)	{	

										$commonItems[$restaurant1]	=	1;	

								}	

				}	

}	

$n	=	count($commonItems);	

if	($n	==	0)	

				return	0.0;	

				$sum1	=	0;	

				$sum2	=	0;	

				$sqrSum1	=	0;	

				$sqrSum2	=	0;	

				$pSum	=	0;	

				foreach	($commonItems	as	$restaurant	=>	$common)	{	

						$sum1	+=	$reviews[$person1][$restaurant];	

						$sum2	+=	$reviews[$person2][$restaurant];	

						$sqrSum1	+=	$reviews[$person1][$restaurant]	**	2;	

						$sqrSum2	+=	$reviews[$person2][$restaurant]	**	2;	

						$pSum	+=	$reviews[$person1][$restaurant]	*		

						$reviews[$person2][$restaurant];	

				}	

				$num	=	$pSum	-	(($sum1	*	$sum2)	/	$n);	

				$den	=	sqrt(($sqrSum1	-	(($sum1	**	2)	/	$n))		

						*	($sqrSum2	-	(($sum2	**	2)	/	$n)));	

				if	($den	==	0)	{	

						$pearsonCorrelation	=	0;	

				}	else	{	

						$pearsonCorrelation	=	$num	/	$den;	

				}	

	return	(float)	$pearsonCorrelation;	

}	

Here,	we	have	just	implemented	the	equation	we	have	shown	for	the	Pearson	correlation	calculator.	Now,
we	will	write	the	recommendation	function	based	on	Pearson	scoring:

function	getRecommendations(array	$reviews,	string	$person):	array	{	

				$calculation	=	[];	

				foreach	($reviews	as	$reviewer	=>	$restaurants)	{	

				$similarityScore	=	pearsonScore($reviews,	$person,	$reviewer);	

								if	($person	==	$reviewer	||	$similarityScore	<=	0)	{	

												continue;	

								}	

								foreach	($restaurants	as	$restaurant	=>	$rating)	{	

												if	(!array_key_exists($restaurant,	$reviews[$person]))	{	

																if	(!array_key_exists($restaurant,	$calculation))	{	

																				$calculation[$restaurant]	=	[];	

																				$calculation[$restaurant]['Total']	=	0;	

																				$calculation[$restaurant]['SimilarityTotal']	=	0;	

																}	

												$calculation[$restaurant]['Total']	+=	$similarityScore	*	

														$rating;	

												$calculation[$restaurant]['SimilarityTotal']	+=	

														$similarityScore;	

												}	

								}	

				}	

				$recommendations	=	[];	

				foreach	($calculation	as	$restaurant	=>	$values)	{	

				$recommendations[$restaurant]	=	$calculation[$restaurant]['Total']		

						/	$calculation[$restaurant]['SimilarityTotal'];	

				}	

				arsort($recommendations);	

				return	$recommendations;	

}	

In	the	preceding	function,	we	calculated	the	similarity	score	between	each	reviewer	and	weighted	their
reviews	with	each	other.	Based	on	the	top	score,	we	showed	the	recommendation	for	the	reviewer.	Let's
run	the	following	code	to	get	some	recommendations:

$person	=	'Arush';	

echo	'Restaurant	recommendations	for	'	.	$person	.	"\n";	

$recommendations	=	getRecommendations($reviews,	$person);	

foreach	($recommendations	as	$restaturant	=>	$score)	{	

				echo	$restaturant	.	"	\n";	

}	

This	will	produce	the	following	output:

Restaurant	recommendations	for	Arush

McDonalds

Pizza	Roma

Sbarro

We	can	use	the	Pearson	correlation	scoring	system	to	recommend	items	or	show	users	who	to	follow	to
get	better	reviews.	There	are	many	other	ways	to	get	the	collaborative	filtering	to	work,	but	that	is	beyond
the	scope	of	this	book.

Using	bloom	filters	and	sparse	matrix
Sparse	matrix	can	be	used	as	highly	efficient	data	structure.	A	sparse	matrix	has	more	0	values	compared
to	actual	values.	For	example,	a	100	X	100	matrix	may	have	10,000	cells.	Now,	out	of	this	10,000	cells,
only	100	have	values;	rest	are	0.	Other	than	the	100	values,	remaining	cells	are	occupied	with	the	default
value	of	0,	and	they	are	taking	same	byte	size	to	store	the	value	0	to	indicate	the	empty	cell.	It	is	a	huge
waste	of	space,	and	we	can	reduce	it	using	the	sparse	matrix.	We	can	use	different	techniques	to	store	the
values	to	the	sparse	matrix	in	a	separate	matrix	that	will	be	very	lean	and	will	not	take	any	unnecessary
spaces.	We	can	also	use	a	linked	list	to	represent	the	sparse	matrix.	Here	is	an	example	of	the	sparse
matrix:

0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0

Row Col Value

0 5 1

1 0 1

2 4 2

3 2 2

4 6 1

5 7 2

6 6 1

7 1 1

Since	PHP	array	is	dynamic	in	nature,	the	best	approach	for	sparse	matrix	in	PHP	will	be	using	only	the
indexes	that	have	values;	others	are	not	used	at	all.	When	we	are	using	the	cell,	we	can	do	a	check	to	see
whether	the	cell	has	any	value;	else,	the	default	value	of	0	is	used,	just	as	shown	in	the	following
example:

$sparseArray	=	[];	

$sparseArray[0][5]	=	1;	

$sparseArray[1][0]	=	1;	

$sparseArray[2][4]	=	2;	

$sparseArray[3][2]	=	2;	

$sparseArray[4][6]	=	1;	

$sparseArray[5][7]	=	2;	

$sparseArray[6][6]	=	1;	

$sparseArray[7][1]	=	1;	

function	getSparseValue(array	$array,	int	$i,	int	$j):	int	{	

				if	(isset($array[$i][$j]))	

								return	$array[$i][$j];	

				else	

								return	0;	

}	

echo	getSparseValue($sparseArray,	0,	2)	.	"\n";	

echo	getSparseValue($sparseArray,	7,	1)	.	"\n";	

echo	getSparseValue($sparseArray,	8,	8)	.	"\n";	

This	will	produce	the	following	output	in	the	command	line:

0

1

0

When	we	have	a	large	dataset,	doing	lookup	in	the	dataset	can	be	very	time	consuming	and	costly.	Let's
assume	we	have	a	dataset	of	10	million	phone	numbers	and	we	want	to	search	for	a	particular	phone
number.	This	can	be	easily	done	using	a	database	query.	However,	what	if	it	is	1	billion	phone	numbers?
Will	it	still	be	faster	to	find	from	a	database?	Such	a	big	database	can	create	slow-performing	lookups.	In
order	to	solve	this	problem,	an	efficient	approach	can	be	using	bloom	filters.

A	bloom	filter	is	a	space-efficient,	probabilistic	data	structure	that	determines	whether	a	particular	item	is
part	of	a	set	or	not.	It	returns	two	values:	"possibly	in	set"	and	"definitely	not	in	set".	If	an	item	does	not
belong	to	a	set,	bloom	filter	returns	false.	However,	if	it	returns	true,	the	item	may	or	may	not	be	in	the	set.
The	reason	for	this	is	described	here.

In	general,	a	bloom	filter	is	a	bit	array	of	size	m,	where	all	initial	values	are	0.	There	is	k	different	hash
function,	which	converts	an	item	to	a	hashed	integer	value,	which	is	mapped	in	the	bit	array.	This	hash
value	can	be	between	0	to	m,	as	m	is	the	max	size	of	our	bit	array.	The	hash	functions	are	similar	to	md5,
sha1,	crc32,	and	so	on,	but	they	are	very	fast	and	efficient.	Usually,	in	bloom	filter	fnv,	murmur,	Siphash,	and
so	on,	hash	functions	are	used.	Let's	take	an	example	of	16	(16+1	cells)	bit	bloom	filter	with	the	initial
value	of	0:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Let's	assume	that	we	have	two	hash	functions,	k1	and	k2,	to	convert	our	items	to	integer	values	between	0
to	16.	Let	our	first	item	to	store	in	the	bloom	filter	be	"PHP".	Then,	our	hash	function	will	return
following:

k1("PHP")	=	5	

k2("PHP")	=	9	

Two	hash	functions	have	returned	two	different	values.	We	can	now	put	1	in	the	bit	array	to	mark	that.	The
bit	array	will	now	look	like	this:

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Let's	now	add	another	item	in	the	list,	for	example,	"algorithm".	Suppose	our	hash	functions	will	return	the
following	values:

k1("algorithm")	=	2	

k2("algorithm")	=	5	

Since	we	can	see	that	5	is	already	marked	by	another	item,	we	do	not	have	to	mark	it	again.	Now,	the	bit
array	will	look	like	this:

0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

For	example,	now,	we	want	to	check	an	item	called	"error",	which	is	hashed	to	the	following	values:

k1("error")	=	2	

k2("error")	=	9	

As	we	can	see	that	our	hash	functions	k1	and	k2	returned	a	hashed	value	for	string	"error,"	which	is	not
present	in	the	array.	So,	this	is	definitely	an	error,	and	we	expect	to	have	such	errors	if	our	hash	functions
are	only	few	in	number.	The	more	hash	functions	we	have,	lesser	the	errors	we	will	have,	as	different	hash
functions	will	return	different	values.	There	is	a	relationship	between	error	rate,	number	of	hash	functions,
and	the	size	of	bloom	filter.	For	example,	a	bloom	filter	for	5000	items	and	0.0001	error	rate	will	require
roughly	14	hash	functions	and	approximately	96000	bits.	We	can	get	such	numbers	from	online	bloomfilter
calculators	such	as	https://krisives.github.io/bloom-calculator/.

https://krisives.github.io/bloom-calculator/

	

Summary
	

We	have	seen	many	advanced	algorithms	and	techniques	that	can	be	used	to	solve	different	types	of
problems	in	this	chapter.	There	are	many	good	resources	available	to	study	these	topics.	Dynamic
programming	is	such	an	important	topic	and	can	be	covered	in	several	chapters	or	have	a	separate	book
for	itself.	We	tried	to	explain	few	of	the	topics,	but	there	are	more	to	explore.	You	also	learned	about
sparse	matrix	and	bloom	filter,	which	can	be	used	for	efficient	data	storage	for	big	data	blocks.	We	can
use	these	data	structure	concepts	whenever	we	need	them.	Now,	as	we	are	reaching	the	end	of	the	book,
we	will	wrap	up	our	discussion	with	some	available	libraries,	functions,	and	references	for	data	structure
and	algorithm	in	PHP	7.

	

	

	

PHP	Built-In	Support	for	Data	Structures	and
Algorithms
	

PHP	is	a	language	with	an	enriched	library	of	predefined	functions,	along	with	super	support	from	the
community.	Whether	it	is	an	algorithm	or	data	structure,	PHP	already	has	solid	built-in	support	for
developers.	In	this	chapter,	we	will	explore	some	of	the	built-in	functions	and	features	that	we	can	use	in
our	data	structure	and	algorithm	implementations.	Let's	now	explore	those	features	in	PHP.

	

	

	

Built-in	PHP	features	for	data	structure
	

PHP	has	a	rich	collection	of	built-in	data	structures	in	Standard	PHP	Library	SPL.	After	the	release	of
PHP	7,	it	is	believed	that	SPL	data	structure	implementation	is	not	very	"performant"	as	compared	to	the
old	PHP	version.	So,	we	will	discuss	a	new	PECL	extension	just	designed	for	data	structures.	We	also
have	a	very	strong	support	for	PHP	array,	which	can	be	used	as	a	set,	vector,	map,	hash	table,	stack,
queue,	collection,	dictionary,	and	so	on.	SPL	is	fairly	new	compared	to	the	array	and	still	managed	to
capture	the	limelight	with	the	diverse	implementation	of	core	data	structures	as	a	built-in	feature.	Since
PHP	5.0,	SPL	is	shipped	with	core	PHP	so	that	no	extra	extension	or	build	is	required.	We	have	already
explored	the	dynamic	nature	of	PHP	array	in	Chapter	2,	Understanding	PHP	Arrays.	In	this	chapter,	we
will	name	few	of	the	other	useful	functions	available	to	PHP	to	operate	on	data	structures.

	

	

	

Using	PHP	array
	

PHP	array	has	a	wider	set	of	predefined	functions	that	make	PHP	array	one	of	the	most	used	features	of
PHP.	We	will	not	discuss	all	the	available	PHP	array	functions.	We	will	discuss	few	of	the	functions	that
can	be	very	useful	for	us	in	our	data	structure	operations.	Here	are	the	PHP	array	functions:

array_pop:	This	pops	the	last	element	of	the	array	similar	to	stack	pop	operation.	The	array	is
passed	as	reference	to	the	function.	It	only	takes	one	argument,	that	is,	the	name	of	the	array.
array_push:	This	pushes	one	or	more	elements	at	the	end	of	the	array,	just	like	a	stack	push
operation.	We	have	seen	that	we	can	push	one	element	at	a	time	using	push.	In	PHP	array,	we	can
push	multiple	values	at	the	end	of	the	current	array.	The	array	is	passed	as	a	reference	in	the	function
as	shown:

$countries	=	[];	

array_push($countries,	'Bangladesh',	'Bhutan');	

current:	Each	array	has	an	internal	pointer	to	identify	where	it	is	at	the	moment.	Initially,	it	starts
from	the	first	element	of	the	array.	The	current	function	returns	the	current	pointer	of	the	array	and
returns	the	value	of	the	element	in	the	current	position.	If	we	consider	the	array	to	be	a	list,	these
internal	pointer	functionalities	will	be	required.
prev:	The	prev	function	moves	the	internal	pointer	one	step	backward.	The	PHP	array	can	work	as	a
doubly	linked	list,	and	prev	is	used	to	go	the	previous	pointer.
next:	The	next	function	moves	the	internal	pointer	to	the	next	element.
end:	The	end	function	moves	the	internal	array	pointer	to	the	end	of	the	array.
reset:	The	reset	function	moves	the	internal	array	to	the	beginning	of	the	array.
array_search:	This	is	a	very	useful	function	for	searching	an	element	in	the	array.	If	the	element	is
found	in	the	array,	it	returns	the	corresponding	index	where	it	was	found.	If	nothing	is	found,	it	will
return	false.	If	multiple	elements	are	there	with	the	same	search	key,	it	will	return	the	first	occurrence
index.	We	have	to	be	careful	as	this	function	might	also	return	0	if	the	element	is	found	in	the	first
index.	So,	we	have	to	check	the	boolean	false	with	strict	type	checking	during	comparison.	The
array_search	function	takes	two	mandatory	arguments,	needle,	and	haystack.	Needle	is	the	element	we
are	looking	for,	and	haystack	is	the	array	where	we	are	looking	for	the	element.	For	example,	if	we
are	looking	for	a	word	in	a	dictionary,	then	we	can	consider	the	search	word	such	as	"needle"	and
"dictionary"	as	the	haystack.	There	is	an	optional	third	parameter	that	enables	strict	type	checking	for
the	element.	So,	if	it	is	set	true,	it	searches	the	element	not	only	by	value,	but	also	by	type:

$countries	=	["Bangladesh",	"Nepal",	"Bhutan"];	

$key	=	array_search("Bangladesh",	$countries);	

if	($key	!==	FALSE)	

				echo	"Found	in:	"	.	$key;	

else	

				echo	"Not	found";	

This	will	produce	the	following	output:

Found	in:	0

If	we	had	!=	inside	the	if	condition	check,	then	it	would	have	shown	Not	found	in	the	result.

array_sum:	This	is	another	handy	PHP	built-in	function	to	get	the	sum	of	a	given	array.	It	will	return
a	single	numeric	value,	which	is	the	sum	of	all	elements	in	the	array.	It	can	be	an	integer	or	float.
array_map:	This	is	a	very	useful	function	if	we	want	to	change	the	elements	of	the	array	with	a
certain	type	of	properties.	For	example,	we	want	to	make	all	text	of	the	array	to	be	in	upper	case	or
lower	case.	Instead	of	running	a	loop,	we	can	use	this	function	to	do	that.	The	array_map	function	takes
two	arguments.	The	first	one	is	the	callable	function,	and	the	second	one	is	the	array	itself.	The
function	returns	the	modified	array,	as	shown	here:

$countries	=	["bangladesh",	"nepal",	"bhutan"];	

$newCountries	=	array_map(function($country)	{	

				return	strtoupper($country);	

},	$countries);	

foreach	($newCountries	as	$country)	

				echo	$country	.	"\n";	

Alternatively,	we	can	write	it	simply	like	this:

$countries	=	["bangladesh",	"nepal",	"bhutan"];	

$newCountries	=	array_map('strtoupper',	$countries);	

foreach	($newCountries	as	$country)	

				echo	$country	.	"\n";	

The	preceding	code	applies	an	array_map	function	to	capitalize	each	word	in	a	given	array.	Both
codes	will	produce	the	following	output:

BANGLADESH

NEPAL

BHUTAN

array_rand:	If	we	need	to	pick	one	or	more	items	randomly	from	a	given	array,	this	function	can	be
very	useful.	The	default	value	is	1	for	the	number	of	items	to	return,	but	we	can	always	increase	it.
array_shift:	This	function	shifts	an	element	from	the	beginning	of	the	array,	which	is	very	much
similar	to	our	dequeue	operation	in	a	queue	data	structure.	The	removed	element	is	returned	from	the
function:

$countries	=	["bangladesh",	"nepal",	"bhutan"];	

$top	=	array_shift($countries);	

echo	$top;	

This	will	show	the	output	bangladesh	in	the	command	line.	The	$countries	array	will	have	only	nepal
and	bhutan	in	it.

array_unshift:	This	function	adds	one	or	more	items	at	the	beginning	of	the	array	and	unshift	existing

items.
shuffle:	If	we	need	to	shuffle	an	array	for	any	reason,	we	can	use	this	function.	This	function	can	be
very	handy	to	randomize	the	whole	array.
array_intersect:	This	function	takes	two	or	more	arrays	as	arguments	and	returns	the	common	items
from	the	first	array	and	finds	out	the	existence	in	other	arrays.	This	function	also	preserves	the	keys.
array_diff:	This	function	calculates	the	difference	between	an	array	and	other	given	arrays.	Like	the
array_intersect	function,	this	function	also	takes	multiple	arrays	as	arguments,	where	the	first	argument
is	the	base	array	and,	others	are	compared	for	differentiating	with	it.

There	are	many	useful	array	functions	in	PHP,	and	they	are	solving	many	existing	data	structure	and
algorithm	problems.	We	can	find	a	list	of	built-in	array	functions	in	PHP	documentation.	For	the	purpose
of	this	book,	we	will	explore	a	few	more	array	functions	for	sorting	in	the	upcoming	sections.	For	other
functions,	PHP	.NET	is	recommended	for	further	reading.

	

	

	

SPL	classes
	

Undoubtedly,	SPL	tries	to	solve	common	data	structure	implementation	issues	for	PHP	programmers.
Many	of	us	are	either	afraid	or	reluctant	to	implement	proper	data	structure	while	programming.	SPL
comes	with	implementation	of	all	basic	data	structure	and,	hence,	makes	life	easier	for	developers	by
using	built-in	classes	and	methods.	Since	SPL	comes	as	a	bundle	with	PHP,	we	do	not	need	to	install	it
separately	or	enable	any	extension	for	it.	In	this	section,	we	will	discuss	some	of	the	common	SPL	classes
in	brief:

SplDoublyLinkedList:	This	class	gives	us	the	option	to	implement	a	doubly	linked	list	without
writing	a	big	chunk	of	code.	Though	it	says	doubly	linked	list,	we	can	utilize	this	class	to	implement
stack	and	queue	as	well,	by	setting	the	iteration	mode	in	the	setIteratorMode	method.
SplStack:	SplStack	class	is	an	extended	version	of	the	SplDoublyLinkedList	class	where	the	standard
stack	functions	are	available,	which	are	actually	from	the	doubly	linked	list	class.
SplQueue:	SplQueue	class	is	an	extended	version	of	the	SplDoublyLinkedList	class	where	the	standard
queue	functions	such	as	enqueue,	dequeue	are	available.	However,	these	functions	are	actually	from	the
doubly	linked	list	class.
SplHeap:	This	is	a	generic	heap	implementation	for	PHP.	SplMaxHeap	and	SplMinHeap	are	two
implementations	from	the	generic	heap	class.
SplPriorityQueue:	SplPriorityQueue	is	implemented	using	SplMaxHeap	and	provides	basic	functionalities
of	a	priority	queue.
SplFixedArray:	As	we	have	seen	in	Chapter	2,	Understanding	PHP	Arrays,	SplFixedArray	can	be	very
handy	to	resolve	memory	and	performance	issues.	SplFixedArray	takes	integer	as	index,	and	hence,	it
has	faster	read	and	write	operations	compared	to	generic	PHP	array.
SplObjectStorage:	Usually,	we	store	anything	in	array	either	using	integer	or	string	key.	This	SPL
class	provides	us	with	a	way	to	store	a	value	against	an	object.	In	object	storage,	we	can	use	the
object	directly	as	a	key	for	mapping.	Also,	we	can	use	this	class	to	store	object	collection.

	

Built-in	PHP	algorithms
Now,	we	will	check	some	of	the	built-in	functionalities	of	PHP	that	solves	lots	of	our	algorithmic
implementation	required	for	day-to-day	operations.	We	can	categorize	these	functions	into	mathematics,
string,	cryptography	and	hashing,	sorting,	searching,	and	so	on.	We	will	explore	the	base	conversion
algorithms	now:

base_convert:	This	function	is	used	for	base	conversion	of	a	number.	The	base	range	is	restricted
from	2	to	36.	Since	the	base	number	can	be	in	any	base	and	contains	characters,	the	first	parameter
for	the	function	is	string.	Here	is	an	example	of	the	function:

$baseNumber	=	"123456754";	

$newNumber	=	base_convert($baseNumber,	8,	16);	

echo	$newNumber;	

This	will	produce	the	following	output:

14e5dec

bin2hex:	This	converts	a	binary	string	to	a	hexadecimal	string.	It	takes	only	the	binary	string	as	the
parameter.
bindec:	This	converts	a	binary	string	to	a	decimal	number.	It	takes	only	the	binary	string	as	the
parameter.
decbin:	This	converts	a	decimal	number	to	a	binary	string.	It	takes	only	the	decimal	value	as	the
parameter.
dechex:	This	converts	a	decimal	number	to	a	hexadecimal	string.	It	takes	only	a	decimal	value	as	the
parameter.
decoct:	This	converts	a	decimal	number	to	an	octal	string.	It	takes	only	a	decimal	value	as	the
parameter.
hex2bin:	This	converts	a	hexadecimal	string	into	a	binary	string.	It	takes	only	the	hexadecimal	string
as	the	parameter.
hexdec:	This	converts	a	hexadecimal	string	to	a	decimal	number.	It	takes	only	the	hexadecimal	string
as	the	parameter.
octdec:	This	converts	an	octal	string	to	decimal	number.	It	takes	only	an	octal	string	as	the
parameter.

There	are	many	other	built-in	functions	for	different	purposes.	One	of	the	most	important	things	to	do	is	to
encode	and	decode	text	strings	while	sending	e-mail	or	transportation	layers.	Since	we	need	to	encode
and	have	the	option	to	decode,	we	do	not	use	one-way	encryption	function.	Also,	there	are	many	useful
functions	that	can	be	used	for	different	string	operations.	We	will	now	explore	such	functions:

base64_encode:	This	function	encodes	data	with	base	64	mime	types.	Usually,	the	encoded	string	is
larger	than	the	actual	string	and	takes	33	percent	more	space	than	the	actual	string.	Sometimes,	the
generated	strings	have	one	or	two	equal	symbols	at	the	end,	which	indicates	the	output	padding	for
the	string.
base64_decode:	This	function	takes	a	base	64	encoded	string	and	generates	the	actual	string	out	of
it.	It	is	just	opposite	of	the	previous	function	we	discussed.

levenshtein:	One	of	the	most	common	problems	we	face	is	to	find	similarity	between	two	texts,	for
example,	a	user-typed	name	of	a	product	that	we	do	not	have	in	the	list.	However,	a	quick	inspection
shows	that	there	was	a	typo	in	the	text.	In	order	to	show	which	is	the	closest	matching	string	or	the
correct	string	based	on	minimal	number	of	characters	to	add,	edit,	or	delete	them.	We	will	call	this
edit	distance.	The	levenshtein	function	or	levenshtein	distance	is	defined	as	the	minimal	number	of
characters	we	have	to	replace,	insert,	or	delete	to	transform	the	first	string	to	the	second	string.	The
complexity	of	the	function	is	O(m*n),	and	the	limitation	is	each	string	has	to	be	less	than	255
characters.	Here	is	an	example:

$inputStr	=	'Bingo';	

$fruites	=	['Apple',	'Orange',	'Grapes',	'Banana',	'Water	melon',	'Mango'];	

$matchScore	=	-1;	

$matchedStr	=	'';	

foreach	($fruites	as	$fruit)	{	

				$tmpScore	=	levenshtein($inputStr,	$fruit);	

				if	($tmpScore	==	0	||	($matchScore	<	0	||	$matchScore	>

					$tmpScore))	{	

					$matchScore	=	$tmpScore;	

					$matchedStr	=	$fruit;	

				}	

}	

echo	$matchScore	==	0	?	'Exact	match	found	:	'	.	$matchedStr	:	'Did	you	mean:	'	.	$matchedStr	.	'?\n';	

This	will	have	the	following	output:

Did	you	mean:	Mango?

Another	variant	of	the	function	takes	extra	three	parameters	through	which	we	can	provide	the	cost
of	the	insert,	replace,	and	delete	operations.	This	way,	we	can	get	the	best	possible	result	based
on	the	cost	function.

similar_text:	This	function	calculates	the	similarity	between	two	strings.	It	has	an	option	to	return
the	similarity	in	a	percentile	manner.	The	function	is	case	sensitive	and	returns	the	similarity	score
based	on	the	matched	characters.	Here	is	one	example:

$str1	=	"Mango";	

$str2	=	"Tango";	

echo	"Match	length:	"	.	similar_text($str1,	$str2)	.	"\n";	

similar_text($str1,	$str2,	$percent);	

echo	"Percentile	match:	"	.	$percent	.	"%";	

The	preceding	code	will	produce	the	percentile	match	between	Mango	and	Tango.	The	output	is	as
follows:

Match	length:	4

Percentile	match:	80%

soundex:	This	is	an	interesting	function	using	which	we	can	find	the	soundex	key	of	a	given	string.
This	soundex	key	can	be	used	to	find	similar	sounding	words	from	the	collection	or	find	whether	two
words	sound	similar	or	not.	The	soundex	key	is	four	characters	in	length,	where	the	first	character	is
a	letter	and	the	remaining	three	are	digits.	Here	are	some	soundex	keys	for	familiar	words:

$word1	=	"Pray";	

$word2	=	"Prey";	

echo	$word1	.	"	=	"	.	soundex($word1)	.	"\n";	

echo	$word2	.	"	=	"	.	soundex($word2)	.	"\n";	

$word3	=	"There";	

$word4	=	"Their";	

echo	$word3	.	"	=	"	.	soundex($word3)	.	"\n";	

echo	$word4	.	"	=	"	.	soundex($word4)	.	"\n";	

The	preceding	code	will	have	following	output:

Pray	=	P600

Prey	=	P600

There	=	T600

Their	=	T600

As	we	can	see	from	the	preceding	output,	both	pray	and	prey	are	different	words,	but	they	have
similar	soundex	keys.	Soundex	can	be	very	useful	to	find	out	similar	sounding	words	from	the
database	in	different	use	cases.

metaphone:	Metaphone	is	another	function	similar	to	soundex,	which	can	help	us	find	similar
sounding	words.	The	basic	difference	between	the	two	is	that,	the	metaphone	is	more	accurate	as	it
considers	the	basic	english	rules	for	pronunciation.	The	function	generates	metaphone	keys,	which
are	variable	in	length.	We	can	also	pass	second	arguments	to	limit	the	key	generation	length.	Here	is
a	similar	example	from	soundex:

$word1	=	"Pray";	

$word2	=	"Prey";	

echo	$word1	.	"	=	"	.	metaphone($word1)	.	"\n";	

echo	$word2	.	"	=	"	.	metaphone($word2)	.	"\n";	

$word3	=	"There";	

$word4	=	"Their";	

echo	$word3	.	"	=	"	.	metaphone($word3)	.	"\n";	

echo	$word4	.	"	=	"	.	metaphone($word4)	.	"\n";	

Here	is	the	output	for	the	following	code:

Pray	=	PR

Prey	=	PR

There	=	0R

Their	=	0R

	

Hashing
	

Hashing	is	one	of	the	most	important	aspects	of	modern-day	programming.	In	terms	of	data	security	and
privacy,	hashing	plays	a	key	role	in	computer	cryptography.	We	do	not	feel	comfortable	to	keep	our	data
unsafe	and	open	for	all.	PHP	has	several	built-in	hashing	functions.	Let's	quickly	go	through	them:

md5:	This	calculates	the	md5	hash	of	a	given	string.	It	will	generate	32	characters	unique	hash	for
each	of	the	provided	string.	Hashing	is	one	way,	which	means,	there	is	no	function	to	decrypt	the
hashed	string	to	actual	string.
sha1:	This	function	calculates	the	sha1	hash	of	a	given	string.	The	generated	hash	is	40	characters	in
length.	Like	md5,	sha1	is	also	a	one	way	hashing.	If	we	set	the	second	parameter	to	be	true,	then	the
function	will	produce	20-character	raw	output	hash	string.	One	thing	to	remember	is	sha1,	sha256,
and	md5	are	not	secure	enough	to	use	for	password	hashing.	As	they	are	very	fast	and	efficient,
hackers	tend	to	use	them	for	brute	force	attacking	and	find	the	actual	input	from	the	generated	hash.
crypt:	This	function	generates	a	one	way	hashing	key	for	a	given	string	with	optional	salt	string.	If
you	are	using	PHP	7,	then	the	function	will	produce	an	E_NOTICE	for	not	providing	any	salt	during	the
function	call.	For	hashing,	the	function	uses	UNIX	DES	based	algorithm	or	other	algorithms
available	for	hashing.
password_hash:	This	is	another	useful	function	that	generates	hash	for	passwords.	It	takes	two
arguments,	one	which	includes	the	actual	string,	and	the	second	is	the	hashing	algorithm.	The	default
hashing	algorithm	uses	bcrypt	algorithm,	and	the	alternate	option	is	the	blowfish	algorithm.
password_verify:	We	can	use	this	function	if	we	have	generated	the	password	using	the	password_hash
function.	The	first	parameter	of	the	function	is	the	entered	password,	and	the	second	one	is	the
hashed	string.	The	function	returns	true	or	false	based	on	the	verification	part.
hash_algos:	If	we	want	to	know	the	list	of	registered	hashing	algorithms	in	the	system,	we	can	use
this	function.	This	will	list	all	the	possible	options	for	hashing	algorithm	in	the	current	system.
hash:	This	function	takes	a	mandatory	hashing	algorithm	name	along	with	a	string	to	be	hashed	to
generate	a	hashed	key.	There	is	an	optional	parameter	to	get	the	raw	binary	output	for	the	hashing.
The	hash	key	length	will	vary	based	on	the	chosen	algorithm.

PHP	has	a	rich	collection	of	functions	and	libraries	for	hashing	and	cryptography.	For	further	reading,	you
can	consider	the	PHP.net	documentation,	along	with	some	other	sites	mentioned	in	the	next	section.

	

	

	

Built-in	support	through	PECL
	

Since	PHP	7.0	release,	a	raising	concern	for	developers	is	the	performance	issue	of	SPL	classes.	PHP	7.0
does	not	bring	any	improvement	to	early	designed	SPL	classes,	and	many	developers	are	now	sceptical
about	using	it	further.	Many	developers	have	written	custom	libraries	and	extensions	for	PHP	to	improve
the	data	structure	efficiency.	One	of	such	extensions	is	PHP	DS,	a	specialized	extension	for	PHP	7	data
structures.	The	extension	is	written	by	Joe	Watkins	and	Rudi	Theunissen.	The	official	documentation	of
PHP	DS	extension	can	be	found	in	the	PHP	manual	at	http://php.net/manual/en/book.ds.php.

The	library	works	as	an	alternative	to	PHP	array,	which	is	a	very	flexible,	dynamic,	hybrid	data	structure.
This	extension	comes	up	with	lots	of	pre-built	data	structures	such	as	set,	map,	sequence,	collection,
vector,	stack,	queue,	priority	queue,	and	so	on.	We	will	explore	them	in	the	next	few	sections.

	

	

http://php.net/manual/en/book.ds.php

Installation
The	library	comes	up	with	different	options	for	installations.	The	easiest	one	is	to	get	it	from	PECL	(a
repository	for	PHP	Extensions):

pecl	install	ds

We	can	also	download	the	source	code	and	compile	the	library	if	we	want.	In	order	to	do	that,	we	just
need	to	get	the	code	from	the	GitHub	repository	and	follow	the	git	commands:	clone
https://github.com/php-ds/extension	"php-ds"
cd	php-ds

#	Build	and	install	the	extension
phpize
./configure
make
make	install

#	Clean	up	the	build	files
make	clean
phpize	--clean

If	there	is	any	dependency	issue,	we	have	to	install	this	package	as	well:

sudo	apt-get	install	git	build-essential	php7.0-dev

For	Windows,	the	DLL	is	available	to	download	from	PECL	site.	For	Mac	OS	users,	Homebrew	has
support	to	install	this	extension:

brew	install	homebrew/php/php71-ds

Once	the	installation	is	done,	we	have	to	add	the	extension	to	our	primary	php.ini	file:

extension=ds.so		#(php_ds.dll	for	windows)

If	the	extension	is	properly	added,	all	pre-built	classes	will	be	available	through	global	\DS\	namespace.

Now,	let's	get	into	details	for	pre-built	DS	classes	from	this	extension.	We	will	start	with	the	base	of	all
classes,	the	collection	interface.

	

Interfaces
	

The	collection	interface	is	the	base	interface	for	all	classes	in	this	DS	library.	All	data	structure
implementations	implement	the	collection	interface	by	default.	The	collection	interface	ensures	that	all
classes	are	having	similar	behavior	of	traversable,	countable,	and	JSON	serializable.	The	collection
interface	has	four	abstract	methods,	and	they	are	clear,	copy,	isEmpty,	and	toArray.	All	of	the	data	structure
implementations	of	DS	class	implement	the	interface,	and	we	will	see	these	methods	at	work	during	our
exploration	of	those	data	structures.

Another	important	aspect	of	the	data	structure	library	is	to	use	an	object	as	a	key.	This	can	be	achieved
through	the	hashable	interface	of	the	library.	There	is	another	important	interface	that	allows	list
functionalities	to	be	implemented	in	data	structure	classes	and	also	ensures	better	performance	than	the
SPL	equivalent	of	doubly	linked	list	and	fixed	array.

	

	

Vector
A	vector	is	a	linear	data	structure	where	values	are	stored	sequentially	and	also	the	size	grows	and
shrinks	automatically.	Vector	is	one	of	the	most	efficient	linear	data	structures	as	the	value's	index	is
mapped	directly	with	the	index	of	the	buffer	and	allows	faster	access.	DS	vector	class	allows	us	to	use
the	PHP	array	syntax	for	operations,	but	internally,	it	has	less	memory	consumption	than	PHP	array.	It	has
constant	time	operations	for	push,	pop,	get,	and	set.	Here	is	an	example	of	vector:

$vector	=	new	\Ds\Vector(["a",	"b",	"c"]);	

echo	$vector->get(1)."\n";	

$vector[1]	=	"d";	

echo	$vector->get(1)."\n";	

$vector->push('f');	

echo	"Size	of	vector:	".$vector->count();	

As	we	can	see	from	the	preceding	code,	we	can	define	a	vector	using	the	PHP	array	syntax	and	also	get	or
set	values	using	array	syntax.	One	difference	is	that	we	cannot	add	a	new	index	using	PHP	array	syntax.
For	that,	we	have	to	use	the	push	method	of	the	vector	class.	Trying	to	set	or	get	an	index	that	is	not	there
will	cause	OutofRangeException	to	be	thrown	during	runtime.	Here	is	the	output	of	the	preceding	code:

b

d

Size	of	vector:	4

Map

A	map	is	a	sequential	collection	of	key-value	pairs.	A	map	is	similar	to	an	array,	and	the	key	can	be	a
string,	integer,	and	so	on,	but	the	key	has	to	be	unique.	In	DS	map	class,	the	key	can	be	of	any	type,
including	an	object.	It	allows	PHP	array	syntax	for	operations	and	also	preserves	the	insertion	order.	The
performance	and	memory	efficiency	is	also	similar	to	the	PHP	array.	It	also	automatically	frees	memory
when	the	size	drops	to	low.	If	we	consider	the	following	performance	chart,	we	can	see	that	map
implementation	in	DS	library	is	much	faster	than	PHP	array	when	we	are	removing	items	from	a	big

array:	

Set

A	set	is	also	a	sequence,	but	a	set	can	only	contain	unique	values.	A	set	can	store	any	value,	including
object,	and	also	support	array	syntax.	It	preserves	the	insertion	order	and	also	automatically	frees	memory

when	the	size	drops	to	low.	We	can	achieve	add,	remove,	and	contain	operations	in	constant	time.
However,	this	set	class	does	not	support	push,	pop,	shift,	insert,	and	unshift	functions.	The	set	class	has
some	very	useful	set	operation	functions	built	in,	such	as	diff,	intersect,	union,	and	so	on.	Here	is	an
example	of	the	set	operation:	$set	=	new	\Ds\Set();	
$set->add(1);	
$set->add(1);	
$set->add("test");	
$set->add(3);	
echo	$set->get(1);

In	the	preceding	example	code,	there	will	be	only	one	entry	of	1	as	set	cannot	have	duplicate	values.	Also,
when	we	are	getting	the	value	of	1,	this	indicates	the	value	at	index	1.	So,	the	output	will	be	test	for	the
preceding	example.	One	question	might	arise	here	that	why	not	we	use	array_unique	here	to	build	a	set.	The
following	comparison	chart	might	be	the	answer	we	are	looking	for:

As	we	can	see	from	the	preceding	chart,	as	the	array	size	grows,	array	unique	function	will	take	more
time	to	compute	compared	to	our	set	class	in	the	DS	library.	Also,	the	set	class	takes	lesser	memory
compared	to	PHP	array	as	the	size	grows:

Stack	and	queue

The	DS	library	also	has	implementations	of	stack	and	queue	data	structures.	DS\Stack	uses	DS\Vector
internally,	and	DS\Queue	uses	DS\Deque	internally.	Both	stack	and	queue	implementation	have	similar
performance	compared	to	SPL	implementation	of	stack	and	queue.	The	following	chart	shows	this:

Deque

The	deque	(pronounced	as	deck),	or	the	double	ended	queue,	is	used	for	the	DS\Queue	implementation
internally.	The	deque	implementation	in	this	package	is	very	efficient	in	memory	usage	and	also	performs
get,	set,	push,	pop,	shift,	and	unshift	operations	in	constant	time	of	O(1).	However,	one	of	the	disadvantages
of	DS\Deque	is	the	insert	or	remove	operation,	which	has	O(n)	complexity.	Here	is	a	performance	comparison
between	DS\Deque	and	SPL	doubly	linked	list:	

Priority	queue

You	have	already	learned	that	priority	queues	are	important	for	many	algorithms.	Having	an	efficient
priority	queue	is	very	important	for	us	as	well.	So	far,	we	have	seen	that	we	can	implement	from	our	own
using	heap	or	use	the	SPL	priority	queue	for	our	solutions.	However,	the	DS\PriorityQueue	is	more	than	twice
as	fast	as	SplPriorityQueue	and	uses	only	five	percent	of	its	memory.	This	makes	DS\PriorityQueue	20	times
more	memory	efficient	compared	to	SplPriorityQueue.	The	following	chart	shows	the	comparison:	

From	our	discussion	in	the	last	few	sections,	we	can	conclude	that	the	DS	extension	is	really	efficient	for
data	structures	and	far	better	compared	to	SPL	for	similar	implementations.	Though	the	benchmark	can
vary	a	little	from	platform	to	platform	and	internal	configurations,	it	shows	that	the	new	DS	extension	is
promising	and	might	be	very	helpful	for	developers.	One	thing	to	remember	is	that	the	library	does	not
have	built-in	heap	or	tree	data	structure	yet,	so	we	cannot	have	a	built-in	hierarchical	data	structure	from
this	library.

For	more	information,	you	can	check	the	following	article	as	the	comparison	charts	are
taken	from	here:	https://medium.com/@rtheunissen/efficient-data-structures-for-php-7-9dda7af674cd

https://medium.com/@rtheunissen/efficient-data-structures-for-php-7-9dda7af674cd

	

Summary
	

PHP	has	a	rich	collection	of	built-in	functions,	and	the	list	is	growing	every	day.	In	this	chapter,	we
explored	some	of	the	defined	functions	that	can	be	used	in	implementing	data	structures	and	algorithms.
There	are	many	other	external	libraries	available	as	well.	We	can	select	any	of	the	internal	or	external
libraries	as	per	our	preferences.	Also,	there	are	plenty	of	online	resources	to	get	acquainted	with	the	data
structures	and	algorithm	concepts.	You	also	learned	about	the	performance	concerns	for	SPL	classes	in
PHP	7	and	got	introduced	to	a	new	library	for	PHP	7	data	structures.	We	have	to	remember	that	data
structures	and	algorithms	are	not	language	agnostic.	We	can	have	same	data	structures	and	algorithms
implemented	using	different	languages	or	different	versions	of	the	same	language.	In	our	next	chapter,	we
will	explore	another	area	of	programming,	which	is	very	popular	at	this	moment,	the	functional
programming.	So,	next,	we	will	focus	on	functional	data	structure	with	PHP.

	

	

	

Functional	Data	Structures	with	PHP
	

In	recent	years,	the	demand	for	functional	programming	language	over	object-oriented	programming	has
increased.	One	of	the	core	reasons	is	that	functional	programming	(FP)	has	inherent	parallelism.	While
OOP	is	used	widely,	functional	programming	is	quite	significantly	making	a	mark	in	recent	times.	As	a
result,	languages	such	as	Erlang,	Elixir,	Clojure,	Scala,	and	Haskell	are	the	most	popular	functional
programming	languages	for	programmers.	PHP	is	not	on	the	list,	as	PHP	is	considered	an	imperative	and
object-oriented	language.	Though	PHP	has	lots	of	support	for	functional	programming,	it	is	mainly	used
for	OOP	and	imperative	programming.	The	core	essence	of	FP	is	the	lambda	calculus,	which	denotes	a
formal	system	in	mathematical	logic	and	computer	science	for	expressing	computation	by	way	of	variable
binding	and	substitution.	It	is	not	a	framework	or	a	new	concept.	In	fact,	functional	programming	predates
all	other	programming	paradigms.	It	has	been	there	for	a	long	time	and	will	be	there	in	the	future	as	well,
as	the	world	is	demanding	for	more	concurrent	computation	and	faster	processing	languages.	In	this
chapter,	you	will	learn	about	functional	programming	with	PHP	and	how	to	implement	data	structures	with
functional	programming.

	

	

Understanding	functional	programming	with
PHP
Unlike	any	object-oriented	programming	language	where	everything	is	represented	through	an	object,
functional	programming	starts	thinking	everything	in	terms	of	functions.	OOP	and	FP	are	not	mutually
exclusive.	While	OOP	focuses	on	code	maintainability	and	reusability	by	encapsulation	and	inheritance,
functional	programming,	unlike	state-oriented	imperative	programming,	is	focused	on	value-oriented
programming,	which	considers	computation	as	a	pure	mathematical	evaluation	and	avoids	mutability	and
state	modification.	When	working	with	OOP,	one	of	the	challenges	is	that	the	object	we	have	created	can
bring	many	extra	properties	or	methods	along	with	it	whether	or	not	we	are	using	it	in	a	particular	case.
Here	are	the	three	key	characteristics	of	functional	programming:

Immutability
Pure	functions	and	referential	transparency
First-class	citizen	functions

Higher	order	function
Function	composition	(currying)

The	concept	of	immutability	tells	us	that	an	object	will	not	change	after	its	creation.	It	will	remain	the
same	during	its	whole	life	cycle.	It	has	a	great	advantage	as	we	do	not	need	to	revalidate	the	object
whenever	we	use	it.	Also,	if	it	requires	being	mutable,	we	can	create	a	copy	of	the	object	or	create	a	new
object	with	new	properties.

So	far,	in	this	book,	we	saw	lots	of	examples	of	data	structures	and	algorithms	using	code	blocks,	loops,
and	conditions.	In	general,	this	is	known	as	imperative	programming,	where	it	is	expected	to	define	each
step	of	the	execution.	For	example,	consider	the	following	code	block:

$languages	=	["php",	"python",	"java",	"c",	"erlang"];

foreach	($languages	as	$ind	=>	$language)	{

				$languages[$ind]	=	ucfirst($language);

}

The	preceding	code	actually	sets	the	first	character	of	each	name	to	upper	case.	Logically,	the	code	is
correct	and	we	have	presented	it	here	step-by-step,	so	that	we	understand	what	is	going	on.	However,	this
can	be	written	as	a	single	line	using	the	functional	programming	approach,	as	follows:

$languages	=	array_map('ucfirst',	$languages);

Both	of	these	methods	do	the	same	thing,	but	one	is	a	comparatively	smaller	code	block	than	the	other	one.
The	later	one	is	known	as	declarative	programming.	While	imperative	programming	focuses	on
algorithms	and	steps,	declarative	programming	focuses	on	input	and	output	of	the	function	along	with
recursion	(not	iteration).

Another	important	aspect	of	functional	programming	is	that	it	is	free	of	any	side	effects.	It	is	an	important
feature	to	have	and	it	ensures	that	a	function	will	not	have	any	implicit	effects	anywhere	on	the	input.	One
of	the	common	examples	of	functional	programming	is	sorting	an	array	in	PHP.	Usually,	the	argument	is

passed	by	reference	and	when	we	get	the	sorted	array,	it	actually	destroys	the	initial	array.	This	is	an
example	of	side	effects	in	a	function.

Before	jumping	to	functional	programming	with	PHP,	let's	explore	some	functional	programming	terms,
which	we	will	come	across	in	the	following	sections.

	

First	class	functions
	

A	language	with	first-class	functions	allows	the	following	behavior:

Assign	a	function	to	a	variable
Pass	them	to	another	function	as	an	argument
Return	a	function

PHP	supports	all	of	these	behaviors	and,	hence,	PHP	functions	are	first-class	functions.	In	our	previous
example,	the	ucfirst	function	is	an	example	of	a	first-class	function.

	

	

Higher	order	functions
A	higher	order	function	can	take	one	or	multiple	functions	as	an	argument	and	also	return	a	function	as	a
result.	PHP	also	has	support	for	higher	order	functions;	array_map	from	our	previous	example	is	a	higher
order	function.

	

Pure	functions
	

A	pure	function	is	a	function	where	for	an	input	X,	the	output	will	be	always	Y	under	any	circumstances.
The	output	will	never	change	for	the	same	input	for	a	pure	function.	So,	for	pure	functions,	there	are	no
side	effects	or	dependencies	on	the	runtime	environment.

	

	

	

Lambda	functions
	

Lambda	functions	or	anonymous	functions	are	functions	without	a	name.	They	can	be	very	handy	when
used	as	first-class	functions	(to	assign	in	a	variable)	or	for	call	back	functions	where	we	can	define	the
function	in	the	place	of	a	call	back	parameter.	PHP	has	support	for	anonymous	functions	as	well.

	

	

	

Closures
	

A	closure	is	very	much	similar	to	a	lambda	function,	but	the	basic	difference	is	that	a	closure	has	access
to	its	outer	scope	variables.	In	PHP,	we	cannot	access	outer	scope	variables	directly.	In	order	to	do	so,
PHP	has	introduced	the	keyword	"use"	to	pass	any	outer	scope	variables	to	inner	functions.

	

	

Currying
Currying	is	a	technique	of	transforming	a	function	that	takes	multiple	arguments	to	a	chain	of	functions
where	each	function	will	take	exactly	one	argument.	In	other	words,	if	a	function	can	be	written	as	f(x,y,z),
then	the	currying	version	of	this	will	be	f(x)(y)(z).	let's	consider	the	following	example:

function	sum($a,	$b,	$c)	{

				return	$a	+	$b	+	$c;

}

Here,	we	have	written	a	simple	function	with	three	parameters	and	when	called	with	numbers,	it	will
return	sum	of	the	numbers.	Now,	if	we	write	this	function	as	a	curry,	it	will	look	like	this:

function	currySum($a)	{	

				return	function($b)	use	($a)	{	

								return	function	($c)	use	($a,	$b)	{	

												return	$a	+	$b	+	$c;	

								};	

				};	

}	

$sum	=	currySum(10)(20)(30);	

echo	$sum;

Now	if	we	run	the	currySum	as	a	currying	function,	we	will	get	the	result	60	for	the	preceding	example.	This
is	a	very	useful	feature	for	functional	programming.

Earlier,	it	was	not	possible	to	call	a	function	like	f(a)(b)(c)	in	PHP.	Since	PHP	7.0,
Uniform	Variable	Syntax	allows	immediate	execution	of	a	callable,	as	we	saw	in	this
example.	However,	to	do	this	in	PHP	5.4	and	higher	versions,	we	would	have	to	create
temporary	variables	in	order	to	store	the	lambda	functions.

Partial	applications
A	partial	application	or	partial	function	application	is	a	technique	to	reduce	the	number	of	arguments	of	a
function	or	to	use	partial	arguments	and	create	another	function	to	act	on	the	remaining	arguments	in	order
to	produce	the	same	output	as	what	we	would	get	if	it	were	called	with	all	the	arguments	at	once.	If	we
consider	our	sum	function	to	be	partial,	where	it	is	expected	to	take	three	parameters,	but	we	can	call	it
with	two	arguments,	and	later	on	add	the	remaining	one.	Here	is	the	code	sample.	The	sum	function	used	in
this	example	is	from	the	previous	section:	function	partial($funcName,	...$args)	{	
return	function(...$innerArgs)	use	($funcName,	$args)	{	
$allArgs	=	array_merge($args,	$innerArgs);	
return	call_user_func_array($funcName,	$allArgs);	
};	
}	

$sum	=	partial("sum",	10,	20);	
$sum	=	$sum(30);	

echo	$sum;

Sometimes,	we	get	confused	between	currying	and	partial	application	even	though	they	are	completely
different	in	their	approaches	and	principles.

As	we	can	see,	there	are	so	many	things	to	consider	while	dealing	with	functional	programming	in	PHP.	It
will	be	a	lengthier	process	to	implement	data	structures	using	functional	programming	in	PHP	from
scratch.	In	order	to	solve	this	problem,	we	will	explore	an	excellent	functional	programming	library	for
PHP,	called	Tarsana.	It	is	open	source	and	comes	with	the	MIT	license.	We	will	explore	this	library	and
also	use	it	as	our	base	for	functional	data	structure	implementation	in	PHP.

Getting	started	with	Tarsana
Tarsana	is	an	open	source	library	written	by	Amine	Ben	Hammou	and	is	available	on	GitHub	for
download.	It	is	inspired	from	Ramda	JS,	a	functional	programming	library	for	JavaScript.	It	does	not	have
any	dependencies	and	has	more	than	100	predefined	functions	to	use	for	different	purposes.	Functions	in
FP	are	spread	over	different	modules	and	there	are	several	modules	such	as	functions,	list,	object,	string,
math,	operators,	and	common.	Tarsana	can	be	downloaded	from	GitHub	(https://github.com/Tarsana/functional)	or
can	be	installed	via	composer.

composer	require	Tarsana/functional

Once	the	library	is	downloaded,	we	have	to	use	it	by	importing	the	Tarsana\Functional	namespace,	just	like
the	following	code:

use	Tarsana\Functional	as	F;	

One	of	the	interesting	features	of	Tarsana	is	that	we	can	convert	any	of	our	existing	functions	to	a	curried
function.	For	example,	if	we	want	to	use	our	sum	function	using	Tarsana,	then	it	will	look	like	this:

require	__DIR__	.	'/vendor/autoload.php';	

use	Tarsana\Functional	as	F;	

$add	=	F\curry(function($x,	$y,	$z)	{	

				return	$x	+	$y	+	$z;	

});	

echo	$add(1,	2,	4)."\n";	

$addFive	=	$add(5);	

$addSix	=	$addFive(6);	

echo	$addSix(2);	

This	will	produce	the	output	of	7	and	13,	respectively.	Tarsana	also	has	an	option	to	keep	place	holders
using	the	__()	function.	The	following	example	shows	the	array	reduce	and	array	sum	of	the	entries
provided	in	the	placeholder:

$reduce	=	F\curry('array_reduce');	

$sum	=	$reduce(F__(),	F\plus());	

echo	$sum([1,	2,	3,	4,	5],	0);

Tarsana	also	provides	a	piping	functionality,	where	we	can	apply	a	series	of	functions	from	left	to	right.
The	leftmost	function	may	have	any	arity;	the	remaining	functions	must	be	unary.	The	result	of	piping	is	not
curried.	Let's	consider	the	following	example:

$square	=	function($x)	{	return	$x	*	$x;	};	

$addThenSquare	=	F\pipe(F\plus(),	$square);	

echo	$addThenSquare(2,	3);

As	we	have	already	explored	some	features	of	Tarsana,	we	are	ready	to	start	our	functional	data
structures	using	Tarsana.	We	will	also	implement	those	data	structures	using	simple	PHP	functions	so	that
we	have	both	parts	covered,	if	we	do	not	want	to	use	functional	programming.	Let's	get	started	with	the
implementation	of	stack.

https://github.com/Tarsana/functional

require	__DIR__	.	'/vendor/autoload.php';	

use	Tarsana\Functional	as	F;	

$stack	=	[];	

$push	=	F\append(F__(),	F__());	
$top	=
F\last(F__());	
$pop	=	F\init(F__());	

$stack	=	$push(1,	$stack);

$stack	=	$push(2,	$stack);	
$stack	=	$push(3,	$stack);	

echo	"Stack	is
".F\toString($stack)."\n";	

$item	=	$top($stack);	
$stack	=	$pop($stack);

echo	"Pop-ed	item:	".$item."\n";	
echo	"Stack	is	".F\toString($stack)."\n";

$stack	=	$push(4,	$stack);	

echo	"Stack	is	".F\toString($stack)."\n";

Stack	is	[1,	2,	3]
Pop-ed	item:	3

Stack	is	[1,	2]
Stack	is	[1,	2,	4]

Implementing	a	queue
We	can	implement	a	queue	using	Tarsana	and	the	built-in	functions	for	list	operations.	We	will	use	the
array	for	queue	representation	as	well	using	this	code:

require	__DIR__	.	'/vendor/autoload.php';	

use	Tarsana\Functional	as	F;	

$queue	=	[];	

$enqueue	=	F\append(F__(),	F__());	

$head	=	F\head(F__());	

$dequeue	=	F\tail(F__());	

$queue	=	$enqueue(1,	$queue);	

$queue	=	$enqueue(2,	$queue);	

$queue	=	$enqueue(3,	$queue);	

echo	"Queue	is	".F\toString($queue)."\n";	

$item	=	$head($queue);	

$queue	=	$dequeue($queue);	

echo	"Dequeue-ed	item:	".$item."\n";	

echo	"Queue	is	".F\toString($queue)."\n";	

$queue	=	$enqueue(4,	$queue);	

echo	"Queue	is	".F\toString($queue)."\n";	

Here,	we	use	the	append	function	to	perform	enqueue,	and	the	head	and	tail	functions	for	the	first	item	in	the
queue	and	dequeuer,	respectively.	Here	is	the	output	of	the	preceding	code:

Queue	is	[1,	2,	3]

Dequeue-ed	item:	1

Queue	is	[2,	3]

Queue	is	[2,	3,	4]

Now,	we	will	shift	our	focus	to	implementing	hierarchical	data	using	simple	PHP	functions	instead	of
classes	and	objects.	Since	functional	programming	is	still	a	new	topic	in	PHP,	implementation	of
hierarchical	data	might	seem	challenging	and	also	time	consuming.	Instead,	we	will	convert	our
hierarchical	data	implementation	using	basic	PHP	functions	along	with	some	basic	functional
programming	concept	such	as	first-class	functions	and	higher	order	functions.	So,	let's	implement	a	binary
tree.

function	treeTraverse(array	&$tree,	int	$index	=	0,
int	$level	=	0,	&$outputStr	=	"")	:
?bool	{

	if(isset($tree[$index]))	{
	$outputStr	.=	str_repeat("-",	$level);

	$outputStr	.=	$tree[$index]	.	"\n";

	treeTraverse($tree,	2	*	$index	+	1,
$level+1,$outputStr);	
	treeTraverse($tree,	2	*	($index	+	1),	$level+1,$outputStr);

	}	else	{	
	return	false;	
	}
	return	null;
}

	$nodes	=	[];	
	$nodes[]	=	"Final";	
	$nodes[]	=	"Semi	Final	1";

	$nodes[]	=	"Semi	Final	2";	
	$nodes[]	=	"Quarter	Final	1";	
	$nodes[]	=
"Quarter	Final	2";	
	$nodes[]	=	"Quarter	Final	3";	
	$nodes[]	=	"Quarter	Final	4";

	$treeStr	=	"";	
	treeTraverse($nodes,0,0,$treeStr);	
	echo	$treeStr;

If	we	look	at	the	preceding	code,	we	have	simply	modified	the	traversal	function	and
converted	it	to	a	standalone	function.	It	is	a	pure	function	as	we	are	not	modifying	the
actual	input	here,	which	is	the	$nodes	variable.	We	will	construct	a	string	on	each	level
and	use	that	for	the	output.	We	can	now	convert	most	of	our	class-based	structures	to
function-based	ones.

	

Summary
	

Functional	programming	is	comparatively	new	for	PHP	developers	as	the	support	for	its	prerequisites
was	added	as	of	version	5.4.	The	emergence	of	functional	programming	will	require	us	to	understand	the
paradigm	and	write	pure	functions	that	are	free	of	any	side	effects	when	required.	PHP	has	some	good
support	for	writing	functional	programming	code	and,	with	that,	we	can	also	write	functional	data
structures	and	algorithm	implementations	as	we	have	tried	to	show	in	this	book.	In	the	near	future,	it	might
come	in	handy	for	optimizing	and	improving	our	application's	efficiency.

	

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Introduction to Data Structures and Algorithms
	Importance of data structures and algorithms
	Understanding Abstract Data Type (ADT)
	Different data structures
	Struct
	Array
	Linked list
	Doubly linked list
	Stack
	Queue
	Set
	Map
	Tree
	Graph
	Heap

	Solving a problem - algorithmic approach
	Writing pseudocode
	Converting pseudocode to actual code

	Algorithm analysis
	Calculating the complexity

	Understanding the big O (big oh) notation
	Standard PHP Library (SPL) and data structures
	Summary

	Understanding PHP Arrays
	Understanding PHP arrays in a better way
	Numeric array
	Associative array
	Multidimensional array

	Using an array as flexible storage
	Use of multi-dimensional arrays to represent data structures
	Creating fixed size arrays with the SplFixedArray method

	Performance comparison between a regular PHP array and SplFixedArray
	More examples using SplFixedArray
	Changing from a PHP array to SplFixedArray
	Converting a SplFixedArray to a PHP array
	Changing the SplFixedArray size after declaration
	Creating a multidimensional array using SplFixedArray

	Understanding hash tables
	Implementing struct using a PHP array
	Implementing sets using a PHP array
	Best usage of a PHP array
	PHP array, is it a performance killer?
	Summary

	Using Linked Lists
	What is a linked list?
	Different types of linked list
	Doubly linked lists
	Circular linked lists
	Multi-linked lists

	Inserting, deleting, and searching for an item
	Inserting at the first node
	Searching for a node
	Inserting before a specific node
	Inserting after a specific node
	Deleting the first node
	Deleting the last node
	Searching for and deleting a node
	Reversing a list
	Getting the Nth position element

	Understanding complexity for linked lists
	Making the linked list iterable
	Building circular linked list
	Implementing a doubly linked list in PHP
	Doubly linked list operations
	Inserting at first the node
	Inserting at the last node
	Inserting before a specific node
	Inserting after a specific node
	Deleting the first node
	Deleting the last node
	Searching for and deleting one node
	Displaying the list forward
	Displaying the list backward

	Complexity for doubly linked lists
	Using PHP SplDoublyLinkedList
	Summary

	Constructing Stacks and Queues
	Understanding stack
	Implementing a stack using PHP array
	Understanding complexity of stack operations
	Implementing stack using linked list
	Using SplStack class from SPL
	Real life usage of stack
	Nested parentheses matching

	Understanding queue
	Implementing a queue using PHP array
	Implementing a queue using linked list

	Using SplQueue class from SPL
	Understanding priority queue
	Ordered sequence
	Unordered sequence

	Implementing priority queue using linked list
	Implement a priority queue using SplPriorityQueue
	Implementing a circular queue
	Creating a double - ended queue (deque)
	Summary

	Applying Recursive Algorithms - Recursion
	Understanding recursion
	Properties of recursive algorithms
	Recursion versus iterative algorithms
	Implementing Fibonacci numbers using recursion
	Implementing GCD calculation using recursion

	Different types of recursions
	Linear recursion
	Binary recursion
	Tail recursion
	Mutual recursion
	Nested recursion

	Building an N-level category tree using recursion
	Building a nested comment reply system

	Finding files and directories using recursion
	Analyzing recursive algorithms
	Maximum recursion depth in PHP
	Using SPL recursive iterators
	Using the PHP built-in function array_walk_recursive
	Summary

	Understanding and Implementing Trees
	Tree definition and properties
	Implementing a tree using PHP
	Different types of tree structures
	Binary tree
	Binary search tree
	Self-balanced binary search tree
	AVL tree
	Red-black tree

	B-tree
	N-ary Tree

	Understanding a binary tree
	Implementing a binary tree
	Creating a binary tree using a PHP array
	Understanding the binary search tree
	Inserting a new node
	Searching a node
	Finding the minimum value
	Finding the maximum value
	Deleting a node

	Constructing a binary search tree
	Tree traversal
	In-order
	Pre-order
	Post-order

	Complexity of different tree data structures
	Summary

	Using Sorting Algorithms
	Understanding sorting and their types
	Understanding bubble sort
	Implementing bubble sort using PHP
	Complexity of bubble sort
	Improving bubble sort algorithm

	Understanding selection sort
	Implementing selection sort
	Complexity of selection sort

	Understanding insertion Sort
	Implementing insertion sort
	Complexity of insertion sort

	Understanding divide-and-conquer technique for sorting
	Understanding merge sort
	Implementing merge sort
	Complexity of merge sort

	Understanding quick sort
	Implementing quick sort
	Complexity of quick sort

	Understanding bucket sort
	Using PHP's built-in sorting function
	Summary

	Exploring Search Options
	Linear searching
	Binary search
	Analysis of binary search algorithm
	Repetitive binary search tree algorithm
	Searching an unsorted array - should we sort first?

	Interpolation search
	Exponential search
	Search using hash table
	Tree searching
	Breadth first search
	Implementing breadth first search

	Depth first search
	Implementing depth first search

	Summary

	Putting Graphs into Action
	Understanding graph properties
	Vertex
	Edge
	Adjacent
	Incident
	Indegree and outdegree
	Path

	Types of graphs
	Directed graphs
	Undirected graphs
	Weighted graphs
	Directed acyclic graphs (DAG)
	Representing graphs in PHP
	Adjacency lists
	Adjacency matrix

	Revisiting BFS and DFS for graphs
	Breadth first search
	Depth first search

	Topological sorting using Kahn's algorithm
	Shortest path using the Floyd-Warshall algorithm
	Single source shortest path using Dijkstra's algorithm
	Finding the shortest path using the Bellman-Ford algorithm
	Understanding the minimum spanning tree (MST)
	Implementing Prim's spanning tree algorithm
	Kruskal's algorithm for spanning tree
	Summary

	Understanding and Using Heaps
	What is a heap?
	Heap operations
	Implementing a binary heap in PHP
	Analyzing the complexity of heap operations
	Using heaps as a priority queue
	Using heap sort
	Using SplHeap, SplMaxHeap, and SplMinHeap
	Summary

	Solving Problems with Advanced Techniques
	Memoization
	Pattern matching algorithms
	Implementing Knuth-Morris-Pratt algorithm
	Greedy algorithms
	Implementing Huffman coding algorithm
	Understanding dynamic programming
	0 - 1 knapsack
	Finding the longest common subsequence-LCS
	DNA sequencing using dynamic programming
	Backtracking to solve puzzle problem
	Collaborative filtering recommendation system
	Using bloom filters and sparse matrix
	Summary

	PHP Built-In Support for Data Structures and Algorithms
	Built-in PHP features for data structure
	Using PHP array

	SPL classes
	Built-in PHP algorithms
	Hashing
	Built-in support through PECL
	Installation
	Interfaces

	Vector
	Summary

	Functional Data Structures with PHP
	Understanding functional programming with PHP
	First class functions
	Higher order functions
	Pure functions
	Lambda functions
	Closures
	Currying
	Partial applications

	Getting started with Tarsana
	Implementing stack
	Implementing a queue
	Implementing a tree
	Summary

